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Preface

This report has been written in partial fulfillment of

Contract NAS 12-583 carried out by The Mathematical Sciences Group

with the support of OCTA at NASA's Electronics Research Center.

The goal of work performed under this contract is the

production of a digital computer program capable of identifying the

dynamic characteristics of a human operator from knowledge of input-

output data.

The component programs have been written and are documented

herein. A certarin amount of experimentation has been done with self-

generated data corrupted by additive noise and the results of this

experimentation is also reported here.

We wish to take this opportunity to thank Dr. Richard Shirley

for the assistance which he has rendered by his interest and suggestions.
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Introduction

This report describes how the identification problem has been

approached in this work. Many of the details have been reported pre-

viously in Program Descriptions delivered to ERC. Several of these are

included as report appendices to provide complete information about all

aspects of the analysis and computation. The body report concerns itself

with the broader aspects of the system, referring to the appendices for

deeper study.

Chapter I describes the context of linear systems analysis in

which the problem is formulated, making specific our assumptions and

the conditions the identified system must satisfy.

Chapter II describes the mathematics involved in the two

basic subdivisions of the system-obtaining the impulse response by

projection onto a subspace, and obtaining a canonical realization from

the impulse response by application of the B. L. Ho algorithm.

Chapter Ill describes how these methods are mechanized as

computational techniques.

Chapter IV describes our preliminary results in system

identification.
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Chapter I

Background and Problem Statement

The ultimate goal of this work is the identification of the

human operator in the sense that we wish to obtain a linear constant

dynamical system which best approximates the human input-output be-

havior in a particular job. In order to discuss the problem abstractly,

we will assume that the system to be identified actually is a linear

stationary dynamical system. By dynamical system we mean here a

completely controllable, completely observable, finite dinensional

system usually appearing as a set of differential equations relating

the state x(t) and the control u(t) by

= Ax+ Bu

and an algebraic relation relating the state and the output or vector

of observables y(t) by

y(t) = Cx(t)

Thus, our dynamical system can be represented by the triple of constant

matrices [C, A, B]. As is well known, this representation is not

unique since any similarity transformation S of A gives a new

representation

[CS -I, SAS -I, SB].

We try to avoid this ambiguity by expressing the system in some

canonical form.
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response

This set of equations has the solution

y(t) " cetA(0) + ItCe(t-T)_u(T)dT.
0

Also characterizing this dynamical system is its impulse

H(t) * cet%,

or its transfer function

H(s) = C(sI-A)-IB _IH(t) = qij "

The input-output relations sometimes appear in the form of

an integral equation

y(t) = H(t-T)U(Z)dz.

0

In all practical cases we define an additional variable z(t) which is

the state-dependent output y(t) corrupted by some "noise" v(t):

z(t)= y(t)+ v(t).

These remarks serve to delineate the context in which our

problem is stated.

Problem i: Given {z(t), u(t)}, defined on the interval [0, T],

obtain a minimal realization [C, A, B] such that

oIT I,z(t) - 0ftCe(t-T)_u(_) d_ !,2dr

is minimal.

This problem does not consider the effect upon z(t) of

initial conditions on the state at time zero. Therefore, it will



provide a good operating procedure only if x(0) is zero. Unfortunately,

it is impossible to place a human operator, such as a pilot, in zero-

state condition. Furthermore, such a technique would limit applications

of the program, since there are great advantages to examining some

part of a long data run rather than only its initial phase. For instance_

it allows the system_ human or machine, to have a break-in or warmup

period before taking data for analysis. Furthermore, one could wish

to examine sequential data blocks in a long run to determine possible

low frequency nonstationarity.

The most straightforward assumption which will enable such

operations is:

Assumption: The system to be identified is asymptotically stable.

In addition we will proceed on the basis that the eigenvalues,

initial conditions, and inputs are such that there exists a time

tI < T such that for computation purposes

fty(t) - H(t-r)u(T)d_ for tI _ t _ T.
0

We now state the problem to be solved.

Problem 2:

[0, T], obtain a minimal realization [C, A, B]

02 IT _ t •^= llz(t) II2at
01 A u(t- )dT

t l'

Given functions {z(t), u(t)} defined on the interval

such that

is minimal.

The norm lIIJ

finite dimensional space.

used here is the usual Euclidean norm in



In what follows the mathematical methods, their numerical

implementation, and recent numerical experiments will be described

and analysed in somedetail.



Chapter II

Mathematical Methodology

Involved in Problem 2 are two distinct subproblems, solutions

to which we have programmed separately. The first is the definition

2
of an approximating kernel H(t) such that o of Problem 2, is

minimal.

The second is the definition of a system

approximately,

[C, A, B] such that,

problem.

minimizes

lib(t) - h(t)ll2dt .

But our problem constraints are such that we must be satisfied with

solving Problem 2.

i. Obtainin_ H(t):

Without loss of generality, we restrict our discussion to

scalar kernel functions h(t).

The method used is basically a Rayleigh-Ritz procedure.

However, important modifications in both the theory and the numerical

techniques are implied by the fact that we are performing what, from

an engineering viewpoint, might be called a second-level approximation

What is really desired is an approximation h(t) which



Problem 2 is mathematically equivalent (see Appendix A,

sec. VII-4), under the restrictions about stability which we have

hypothesized, to minimizing

Here

tl rtlf

[ | ([1(.) - h(_))Q(.,s)(H(s) - h(s))dsdz = - hll 2

o_ o_ Q"

TQ(x,s) = u(t-z)u(t-s)dt

t I '

is a nonnegative definite symmetric kernel which is singular if u(t)

is a band-limited function.

If nothing else, the digital implementation which we use

would serve to band-limit u(t) by the sampling theorem. Fortunately

the singularity of Q does not seem to be a serious practical problem.

The nonsingularity of Q is a measure of the amount of information

about h(t) which is present in z(t). This is independent of noise,

of course, and our experiments with noise-free data indicate that

our present signal

i0
1

u(t)=_+k=[1% sinker, I%1 =1 (2.1)

is adequate for our purposes.

Returning therefore, to our Rayleigh-Ritz procedure for

Problem 2, we assume that a set of functions {£i (t)}Ko are available

with

of interest, there exists a linear combinationsuch that for each h(t)

K

h(t) = _ 8kgk(t)
k=o

Ilk<t) - h(t ll

satisfactorily small.



This representation of h(t)

minimized with respect to the vector

2
being decided upon, o is

8

_o

|

8K "
.J

That is we compute

t

z(t) Of h(x)u(t-x)dx = K ftI Bk Zk(T)U(t-r)dT
k=o 0

and minimize

fT tlz(t) _ z(t) [[ 2dr

t 1 '

by manipulating B.

Defining a new set {fi(t) }K of functions by

(2.2)

It

fi (t) 0j £i (T)u(t-T) dr

we find that the equation to be solved in the least square sense is

K

Bkfk(t) = z(t) tI .< t .< T .
k=o

Under very general conditions on {£.}K and u(.)
1 o

A, section Vll-3) we can show that {fk(t)} K is a linearly independento

set and there exists, therefore, a unique minimum of (2.27.

(Appendix

The result on linear independence cannot be stated briefly,

but for
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M M
u(t)= X aksink t,

k=l k--I

then, usually, the set {fi}_ will be linearly independent if

K+I.<2M

and {£i}_ is linearly independent.

A more detailed discussion of the effects of K and M

is contained in Appendix A section VII-4. However, M = i0 appears

to be adequate for our purposes if we can indeed obtain a satisfactory

approximation with the given K + i functions {£.(t)i K.
1 O

This is rather a serious stumbling block at present for

reasons associated with the numerical computations. These are set

forth in Chapter III.

A complete description of the program used to obtain h(t)

is contained in Appendix A.

2. Obtaining [C, A, B] from h(t):

The B. L. Ho method is used to obtain the system representation

from the impulse response. This is done either directly from the

Taylor coefficients of h(t) or indirectly by using the values of

at fixed time intervals to generate a system representation [C, $, F]

of the discrete system and then taking the logarithm of that system

to obtain the continuous system [C, A, B]. The present description

will be confined to the single-input, single-output case because this

is where our experience lies. In section i. of this chapter, this

restriction was made without loss of generality. Here it is a serious

iI



restriction, and programs are being modified to handle the multi-input,

multi-output situation.

A complete proof of the single-input, single-output Ho pro-

cedure may be found in Appendix B, section VII-I. The method will be

outlined only briefly here.

A sequence {a k} is said to be of rank less than or equal

th
to n if it can be generated from n-vectors c and b and an n

order matrix A by the rule

ak = cAk-_ .

The B. L. Ho procedure takes a sequence (of finite rank),

determines its rank, and exhibits the matrices [c, A, b].

For h(t) = ce_, the sequence

hk = h((k-l)6) = ce(k-l)6_ = c(e6A) k-_

satisfies the above condition and the Ho procedure will therefore give

6A
a discrete system similar to [c, e , b]. This can then be transformed

to a continuous syste m similar to [c, A, b].

On the other hand, if we expand h(t) in its Taylor Series

h(t)= _ t
k=o

then ak = cAk-lb

forms a sequence which satisfies the given condition and leads directly

to a system similar to

[c, A, b] .

12



Generation of ak from h(t) involves high order differentiation

which is well known to be a poorly-conditioned operation on experi-

mental data. Both procedures are available; however, we have obtained

better results with the sampled impulse response than with the Taylor

Series even for low order systems and expect this to hold even more

strongly for higher-order system.

The program implementing the B. L. Ho procedure (MICARE) is

described in appendix B, the system logarithm program (CPC) is described

in Appendix C. These two virtually complete the procedure; we have

omitted the very simple routines describing how the sampled impulse

response is obtained from the coefficients {Bi} _. Input to MICARE

is a sequence as described above.

13



Chapter III

Computation

The mathematics described in Chapter II is very straight-

forward and the implementation should be very simple. This turns

out to be untrue because of computational difficulties, especially in

the presence of noise.

We first consider the noise-free case and examine the first

problem: What should be the set of basis function {_(t)}K ?
_ Q

i. The A_proximatin_ Set

By our fundamental assumption, all h(t) under consideration

will decay to zero. It was felt therefore that the functions of the

set {h i} should also satisfy this condition. This ruled out fourier

approximation and the usual polynomial approximations.

Several sets of appropriate functions appear in the engineering

literature (see W. H. Kautz, Transient Synthesis in the Time Domain,

IRE Transactions-Circuit Theory, September 1954, pp 29-39). Of these,

the laguerre functions were chosen for two major reasons. They can

be generated economically by using their recursion relations and the

analysis of their approximations properties has been very clearly

performed (J. W. Head, Approximations to Transients by Means of

Laguerre Series, Proc. Cambridge Philosophical Society, October 1956,

pp 640-651).

A few facts about the laguerre functions will make the

subsequent discussion more readily understood.

14



are :

For arbitrary (real positive) p, the first few functions

t (t)= e-pt
O

£1(t) = 2/_p e-Pt(2pt - i)

Z2(t) = /_-p e-Pt(2p2t 2 - 4pt + i)

£3(t) = 2/_p e-Pt(_p3t 3 - 6p2t 2 + 6pt - i)

2 p4t4 16 p3t3 + 12p2 2£4(t) = 2_p e-Pt(_ -_- t - 8p + i)

£5(t) = 2/_p e-Pt(l_ p5t5- I0 4 4 _ p3t33 p t + -20p2t 2 + 10pt - i) .

The initial value is _ 2_pp, £k(t) has k relative extrema of

decreasing magnitude, and Zk(t) for p = i is computationally zero

at 2k + 7. The most serious oscillations of £k occur near zero,

-(2k+l)pt Table I
where £k(t) behaves, to first order, like e

-At
shows the percentage error in Simpson's Rule integration of e

for various numbers of integration intervals per time constant. (To

avoid confusion here, by integration interval, we mean the interval

between function evaluations, which is half of what is usually called

the integration interval in Simpson's Rule.)

Assuming that we wish to integrate with a relative error

of about 10 -4 we see that the integration interval $ must satisfy

_ <
2.7p (2K+I)

In addition, to satisfy the decay property, £k(t) = 0 for t > tI

we must have tI > 2K + 7 for p = i. Since p represents a linear

15



time scaling, we may solve these relations for p = 1 and then modify

the integration interval by a factor of _. This meansthat
P

1
6 < , t. • 2K + 7 .

2. 7 (2K+I) a.

In the computer program, the parameters determining tl are _ and

INTST, the number of points omitted from fitting, by the relation

tI = (INTST-I)*6

Putting these together we find that

1 2K+7

2.7(2K+I) >" 6 >_ (INTST-I) "

Solving this for K, and 6 gives the following table

K INTST

0 19 .37

I 73 .123

2 150 .074

3 250 .0525

4 366 .041

5 510 .034

6 670 .028

7 856 .025

8 955 .022

At this point the hard facts of computer size intrude. We

are at present limited to consideration of the function at 1600 points.

It seems wasteful to devote less than half of these to the fitting

interval.

In the light of all these factors, we have chosen

K = 6

6 = .025

INTST = 800

as our working parameter set.
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For completeness we must also ask if this integration interval

is adequate to integrate the input satisfactorily.

For reasons which are explained in Appendix A, section 4,

the fundamental period appearing in the input should equal the fitting
T-t I

interval T - t I. Therefore, the shortest period will be i0 and

have 80 points used for integration. The following table shows relative

error in integrating sinusoids by Simpson's Rule, showing that we are

easily within our desired error of 10-4 .

Intervals/period Relative error

4 4.7%

8 .23%
12 4.3 • 10-4

16 1.3 - 10-4

The selection of parameters having been made, we must examine

the systems which can be approximated satisfactorily. For this we

refer to Head's paper, op.cit., to find that for arbitrary _ and p,

_-_ _k(t )
e _+P k=o

Of course p, the eigenvalue of the laguerre functions is

positive (or has positive real part) in our application, so this

series is convergent iff _ has positive real part, i.e., if our

fundamental assumption of asymptotic stability is satisfied. However,

we limit the series to seven terms; therefore, to satisfy our arbitrary

desire for 10 -4 relative error (approximately four significant digits)

we must have

6

a+p
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This implies that
2

_+P ---__.q/! = i0 3 = 0. 215 .

The points _ which satisfy
i

lie on a circle of radius

and center

2
l-r

2
l+r

p
l_r 2

Unfortunately this doesn't cover nearly the desired area in the

complex plane. For instance, in Figure I, we show two circles to indicate

the types of regions we could consider.

The preceding analysis has led us to an impasse _nich tells us

that under the existing conditions we cannot approximate the desired

spectrum of functions with a fixed set of laguerre functions. To

illustrate, to encompass both e = i0 and _ = 0.i, the best choice of

9 In order to obtain 10 -4
p is i and the value of r will be i-_ "

error, nearly 50 terms would be needed, requiring 6 < .004 and at the

same time a fit interval of i00 seconds (25000 points).

This is clearly out of the question. During our period of

testing the effects of noise we will confine our attention to systems

which can be adequately approximated, in the noise free situation, by

a single, low-order laguerre fit. After the noise problem is sufficiently

understood, the basis set can be expanded to cover more of the region of

18



interest. A set of perhaps twenty roots could be chosen in the complex

plane so as to minimize the fit error for any system in our region. On

the other hand several sets of laguerre functions could be used.

Figure 2 shows how four sets of laguerre functions could cover

most of the desired region while staying within our computational

capabilities. Figure 3 shows an alternate configuration which while

covering fewer oscillatory roots, blankets the real roots extremely well.

Figures 2 and 3 are only approximate of course, since when

distinct eigenvalues of laguerre functions are involved, a reevaluation

of the working parameters must be made.

We now turn to the problems of the integration procedures

forming {fi (t)}Ko "involved in

2. Integration Methods:

Trapezoidal integration was used initially but proved inac-

curate. A procedure designed to convolve a tabulated function with

laguerre functions was programmed and tested but was found to be no more

accurate than trapezoidal integration because it required taking differ-

ences of large numbers. The integration finally chosen and now in

use is Simpson's Rule.

Our computational object in the beginning was to be able to

identify all elgenvalues with real parts between -i0 and -0.i and

"reasonable" imaginary parts. To obtain satisfactory integration accuracy

we should have an integration interval of about 0.03 and should have a

total fit interval [tl,T ] of length about 30.

The integration interval is compatible with that previously

determined by the laguerre functions. The total fit interval of

800 " 0.025 = 20 seconds in less than the three time constants which

would be ideal but does provide two time constants for the worst case

(-0.I eigenvalue).
19
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Number of intervals

per time constant

i

i.I

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.

Relative error

5.0e-3

3.5e-3

2.5e-3

1.8e-3

1.4e-3

l. Oe-3

8.1e-4

6.4e-4

5.1e-4

4.1e-4

3.4e-4

2.8e-4

2.3e-4

1.9e-4

1.6e-4

1.4e-4

1.2e-4

l.Oe-4

9.0e-5

7.7e-5

6.8e-5

Table I

-lt
Relative error in integrating e by Simpson's Rule.
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Chapter IV

Numerical Results

The results reported here were designed to give an estimate of

the effects noise will have on the identification. In order to isolate

these effects, the first system chosen was one which can be represented

exactly by the laguerre functions. The system is

[i, 0]

having transfer function

(s+l)
and kernel function

2

h(t) = te-t .

For p = 1 D

with

h(t) = 8o£o(t) + _l£1(t)

i

8° = 81 =-- = 0.353555.
2/2

The complete set of parameters used in the Fit Program and

in the Ho program appear in Table i.

The problem was run first with no noise

gave excellent results

(N/S = 0). This

= .35355505
0

81 = .35355541

82 = -.lIE-6

83 - .28E-6
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B4 = -.26E-6

_5 -- .89E-7

B6 = -'26E-6 .

Just how good these results are may be seen from the taylor

coefficients {Sk}. These should be sk = (-l)k+_ and in spite of

the difficulty of computing derivatives we obtained

S =

o

sI =

s9=

.2E-5

1.00002

9.034

s16 = -16.77

Using N/S = 0.5, we found that results had a fairly large

dispersion, indicating that using 800 points for fitting is not really

adequate. In order to average over a larger number of points and to

avoid drawing conclusions from a single noise burst, we ran five noise

bursts.

The dispersion of the results were, in fact, so much larger

than we had expected, that some additional checks were performed to

verify program performance. Among these was a demonstration of linearity,

done by fitting noise alone. This showed that the dispersions were

indeed caused by the projections on the fitting functions {fi(t)} 6 ofo

the noise.

The actual computation of the eigenvalues was the most sensitive

part of the process. Impulse responses and characteristic polynomials

were usually obtained with fair accuracy.

25



Information about the impulse responses is summarized in

Table 2. Burst 2 is undoubtedly the best, being virtually indistinguish-

able from the actual when graphed. Bursts i and 5 are the worst, Burst

i having the lowest peak and Burst 5 having the highest initial and

terminal errors. Nevertheless, the impulse responses obtained are not

too bad. Figures i - 3 show the impulse responses for Bursts, i, 3, and

5, together with the impulse responses of the associated realizations.

Notice that the realizations depart from the fit in the second half of the

interval. This occurs because of current space limitations in the ANALYSIS

Program, these will be removed soon, enabling us to fit over the full

range, rather than only over the first 2.3 seconds.

Table 3 shows the eigenvalues, characteristic coefficients, and

input coefficicents (B vector) for the five realizations. Figure 4 shows

the roots in the complex plane.

These robts are hardly good approximations to the actual roots,

even though the fit impulse responses are, except for the initial value

on 5, consistently in error by less than 10%of peak value. Part of this

problem is caused by the coincident roots which are sensitive to the char-

acteristic coefficients. For instance in Burst 2, the impulse response

and the characteristic coefficients are in error by less than 2%, but the

eigenvalues are individually wrong by 25%. Since coincident roots are not

expected in practice, this particular problem need not concern us to much.

In addition, we can expect someassistance from realizations using the

larger interval mentioned above. Larger intervals, we know from experience,

will tend to bring the roots, for this realization, closer to one, thus

giving better eigenvalues. Wemight mention that in Bursts 2 and 4 the

realization showed less tendency to depart from the fi_ response.

26



Although determination of system poles is a most important

task, we must also be able to show the system zeroes. For this the

last two columns of Table 3 are helpful. Naturally Burst 2 is the

best.

When the noise to signal ratio was increased to one, all

errors in {Sk} _ , {Sk} , and the impulse response increased linearly.

Table 4 gives the eigenvalues which were obtained from the

five noise bursts and from the averaged 8k'S of the five bursts.

The averaged impulse response for N/S = 1 appears in Figure

5. Again we are led to the conclusion that the procedures are working

well and that we can obtain quite reasonable results even in the presence

of low signal/noise ratios, but that 800 points is insufficient.

It is very clear here that the overall tendency of a noisy

signal is to "spread" the impulse response so that the peaks are lower.

In general this will probably tend to move the eigenvalues closer to

the imaginary axis and to reduce the d.c. gain. It certainly tends

to do that here. This is the only observed effect that cannot be

removed by using more data.

Comparing Tables 3 and 4 with respect to linearity, we find b 1

and b 2 very linear (doubled noise, doubled error). This is because b1

and b 2 are almost completely dependent, linearly, on the first and

second sample points of the impulse response. The characteristic

coefficients tend to look at the global impulse response and are almost

but not quite linear, the eigenvalues obtained from them do not, of

course, have linear behavior.
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In all this work the noise was obtained from a digital pseudo-

randomnoise generator. N/S was an input quantity and the noise

standard deviation was set equal to

where for input

i0
ck sin k_t ,

k=l

having steady state output

z(t)
i0

k=l
(ak cos k_t + bk sin k_t) ,

i0

k=l

28
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K = 6

6 = .025

p = i.

N = 1600

N = 1599

INTST = 800

INTST = 801

IORFOS = i0

N/S = .5

1
Tf = _ (Fit Interval)

Fit Program Parameters

(Order of laguerre approximation)

(Integration step size)

(Eigenvalue of laguerre functions)

(Number of steps, input)

(Number of steps, used)

(First point fitted, input)

(First point fitted, used)

(Number of sines in forcing function)

(Noise/signal ratio)

(Period of lowest frequency forcing term)

=0.i

N = 49

NST -- 23

Analysis Program Parameters

(Impulse response sampling interval)

(Number of points used)

(Starting dimension of Hankel matrix)

Table 1
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Actual Burst

y(O)

y(.8)

y(.9)

y(1.o)

y(1.1)

y(l.2)

y(4.8)

0

.359

.366

.368

.366

.361

.040

.0044

.334

.344

.349

.351

.349

.038

-.0003

.360

.366

.368

.366

.361

.041

•032

.337

.346

.352

.354

.353

.036

-.0011

•356

.359

.358

.354

.347

.029

-. 041

.361

.366

.365

.360

•352

.030

Table 2
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Appendix A

The Fit Program
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I. Purpose

The purpose of this program is to generate the coefficients

{8i} 0 in a finite expansion

K

(t)Bi i
i=O

for the impulse response of an asymptotically stable, linear, stationary

dynamical system. The functions {_i(t)} being used now in the program

are the laguerre functions [i], but the modular construction of the

program permits changes to different function sets.

The data on which the program works is the input function

u(t) to the unknown system and the output z(t) which is the system

response corrupted by noise. Here t g [O,T].

The problem is solved by assuming the impulse response to be

represented in the form (i).

This function then is convoluted with the input to produce

an output which is a function of the finite vector

(I)

8 = [_o' "'" ' SK ]'"

This is compared with the actual output function z over a subinterval

[tl,T] to allow the effect of initial conditions to decay and a least

square solution obtained for 8.

The actual - _--_^_ w..............._e_=_=_ works - _+_ _oo_=e_=A functions

{u } and {zi}, u. = u((i-l)6).i l

In addition to the vector 8, the first few coefficients

of the taylor expansion of (I) are printed.
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The program described here works in a testing modewhere the input

and output sequences are generated internally from a known system. _ne deck

described here uses a generalized inverse routine to solve for B. Other

versions of the program, easily obtained from this one by modification, get

the input-output sequences from externally generated cards and obtain B by

inverting the normal matrix.

This program has the capability of iterating on P, the eigenvalue

of the Laguerre functions, which is a free parameter in the expansion, to

achieve a minimumof the fitting error. At present _u" is not in use (see V,
Restrictions and Comments) but can be activated by removing the

GO TO 203

between EFN 404 and 510 (see VI, Procedure, and the listing in Appendix i).

II. Operations - Input

I. The first input card has format

(3110, 2El0.2)

it contains

Q

N = number of subdivisions in the interval of interest [O,T].

.Maximum 1600.

K = order of approximation. F_ximum 19.

KS = number of Taylor coefficients desired. F_ximum 29.

DEL = _ = Length of a subdivision.

T

N

Suggested range is 0.02 .< 6 .< 0.i.

TSCALE -- A parameter for scaling the time interval. Usually I.

The second input card has format

(E13.8)

it contains

STDEV = the noise to signal ratio desired in the output,

(self-generated-data operation). The input used is

a sum of sinusoids, hence the noiseless output y(t)

is a sum of sines and cosines. The square root of
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transients to subside. INTST

N-INTST < 800.

4. The fourth input card has format

(7110)

it contains 7 fixed point ones in that format.

historical significance.

5. The fifth input card has format

(I2)

it contains

NCASE= 1

=0

the sumof the squares of the coefficients is defined

to be the norm of the output, ilYi!. STDEV* IlYi}

is the standard deviation of the noise added to y(t).

3. The third input card has format

(15)

it contains

INTST= the number of subdivisions ignored in the least

square fitting. We allow INTST*DEL= t I time for

and N must satisfy

This card has purely

if the run should terminate.

if another data set should be read.

Language is FORTP_ANIV, no tapes are used.

III. Printout

The output

system response to the input and v(t)

z(t) = y(t) + v(t), where

is noise.

i0
k k

y(t) = _ (ak cos _ t + bk sin _ t). We define
k=l

y(t) is the noiseless
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this is printed as OUTPUT NORM =

printed.

STDEV is printed as NOISE TO SIGNAL RATIO =

The noise mean and standard deviation are printed.

The number of points (=N+I) in the interval [0,T] is

The number of B coefficients (=K+I) is printed.

The number of taylor coefficients (=KS+l) is printed.

T (=N*DEL) is printed.

DEL the time increment, is printed.

The scaled time increment DEL*TSCALE is printed.

INTST is printed.

The rank of the matrix used to solve for B is printed as

The

The

P, the eigenvalue of the laquerre functions, is printed.

ANK _-

K+I

KS+I

components of B are printed.

taylor coefficients are printed.

ERR,

1 li ! !h_fSTERR=_

the experimental, relative standard deviation of the error,

K 2 ] 1/2

y[_.fj(ti) - z(ti)] JiCo J

N-INTST

is printed. Here

f(t) =
3

:t

I Z.(z)u(t-T)dT .
0 3

IV. Subroutines

The modular construction of the program expresses itself in

a relatively small MAIN and a large number of subroutines.
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i. Subroutine GENIO. The purpose of subroutine GENIOis to compute

r _N+I
r _N+I and the output vector lzi71the input vector _ui_ 1

i0
k

u(t)= [ cksinTt
k=l

where
cI = c2 = c3 = c5 = c 7 = c9 = I

and c4 = c 6 = c8 = Cl0 = -i

The sign changes are designed to minimize the effects of initial

transients on the fitting procedures.

The noiseless output y(t) is composed of only the equi-

librium solution. The initial transient is omitted. There are two

reasons for this. In the first place it is a more honest procedure

since a better fit can be obtained if the correct transient is present

and we must assume that we do not know the initial state of our system.

Secondly it saves considerable machine time. This gives us

y(t) --

i0

k=l

k k

(ak cos _ t + bk sin _ t) ,

where ak

desired.

and forms

and
bk depend upon ck and the system whose response is

= 2

GENIO computes the OUTPUT NOP_M, llyll Lk=l(_ + b k

SD = KiYlI*STDEV-

GENIO contains a random number generator and a sample v.
l

with mean zero and standard deviation SD is added to each sample

Yi (i _ INTST) to form the noisy output zi.

2 Function PHIl(T) Computes the number _ (T),
• " O

the value at T

of the first laquerre function.

O
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3. Function PHI2(T). Computesthe number

of the second laguerre function.

£1(t) = _ e-pt (2p_ - i).

4I(T), the value at T

Subroutine RCSN. This subroutine obtains Zk+l(t)

£k_l(t) by the following recursion relation

2pt - 2k-i £k(t ) _ kZk_l(t)_k+l (t) = k+l

o

fk(t) = Zk(_)u(t-T)d_ .
0

In the actual mechanization, it forms equal matrices

elements

fj-i (T)u (t-T) dTF(i,j) =0

where t = (INTST + i - i) * DEL.

from Zk(t)

Subroutine FKSUB. This subroutine generates the functions

F and FP with

FKSUB calls functions PHIl and PHI2 and subroutine RCSN.

o

in FKSUB and overwrites it with the transpose of

of FP.

k+l

Subroutine GINV2. This subroutine takes the matrix FP constructed

(FP) +, the pseudo inverse

The rank of FP is printed from Glh_2; it should be equal to

in virtually all cases.

7. Function DOT. GIN_V2 requires the function DOT to compute inner products

of the columns of FP.
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8. Subroutine CHECK. This subroutine computes ERR, the fitting error.

Given the matrix F conducted in FKSUB,the vector 8 computed

in MAIN, and the output vector z, it computes

N+I-INTST
IIF8- =II 2 2

= i= I ((F_) i - ZlNTST+I_ i)

The experimental standard deviation of the error is computed

from this

9. Subroutine DKPHI. This subroutine computes

d_!_ Zk( )dt
t=O

for k = 0, ..., K. These quantities are used in calculating the Taylor

coefficients of the estimated impulse response.

I0. Function BCOF. This function computes the binomial coefficients for

use in DKPHI.

Several comments are in order concerning the subroutines.

When using experimental data entered from cards, we retain GENIO

for the sake of convenience, but its purpose is solely to read cards.

Converting to use of the normal matrix rather than the generalized

inverse requires considerable effort, including much use of double precision.

Such a deck is available.

i
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Whenchanging from the laguerre functions to a different data

set CHECK,GENIO,GINV2would be retained unchanged. FKSUBwould be

somewhatmodified, DKPHIwould be completely altered, and the other

routines more or less drastically changed, dependent upon the function

set.

V. Restrictions and Com_ments

Dimension restrictions have been noted under II Input.

The program appears to be operating correctly, but as presently

written it cannot be said to operate as well as expected. In the noise-

free case, oscillatory systems with imaginary parts greater than about 2.

do not yeild good fits. In the noisy case, even with 800 points to fit

over, the approximation is not good enough to produce accurate results in

the MICARE program (MSG PD-67-I04). The 8 vector averaged from several

distinct trials seems to do reasonably well. More information on the

results can be obtained from a forthcoming MSG Technical Note.

The iteration on P to minimize ERR is not being used because

it has proved ineffective in treating noisy data.

When fitting exact data, the iteration was extremely helpful in

obtaining accurate information about the impulse response. However, the

variations leading to this improvement were about 10 -4 or i0 -5 of IIyll •

Therefore at reasonable noise levels, this iteration was virtually useless.
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VI. Procedure

Circled numbers, e.g. 26 are external formula numbers in the

FORTRAN source program.

401 Initialize for iteration on P:

Set P

Read N,K, KS, DEL, TSCALE,STDEV, INST

Make N and INTST odd numbers, INTST >. 5.

Scale DEL.

Call GENIO to form {u.} {z i} and IlYll •

551 Print N + i, K + i, KS + i, T, DEL, TSCALE, T*TSCALE, DEL*TSCALE,

INTST

Call FKSb_ to form the equal matrices

.t

F(i,j) = ] Zi(T ) u(t-T)dT

0

F and FP with

where t = (INTST + j - i)* DEL .

Call GINV2 to obtain the pseudo-inverse and rank of FP.

23 Compute as

= (FP)+z

where only the components z. of z from i = INTST to
l

i = N + 1 are used.

Call CHECK to obtain the standard deviation of the fit
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29 Normalize this error by dividing by IlyN

I - zlT
ERR = !lYll (N-INTST) "

Print

Compute the Taylor coefficients

Print N, K, T, DEL

Print the Taylor coefficients.

Print P and

TO TO 203

(This omits P

ERR.

iteration for ERR minimization)

The error minimization is done by fitting a quadratic in P

through the smallest three available errors. There is only one error

return, when the second derivative is negative, i.e., when the function

appears to have no minimum locally.

203 Read NCASE

If NCASE = 0, to to

STOP

401
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VII. Mathematical Analysis

i. The Procedure.

Given the linear stationary dynamical system

i=Fx+Gu

y=_

z=y+v,

where v is observational noise, we know that the output can be written

as

H

z(t) = HetFx(o) + I He(t-r)FGu(_)d_ + v .

0

By a change of variable, this can be rewritten as

ftz(t) = HetFx(0) + HerFGu(t-T)dr+v

0

From a knowledge of z(t) and u(t) only on some interval

we want to obtain an estimate h(t) of

[0,T] ,

h(t) = HetFG .

(7.1)

In order to do this, lacking knowledge of x(0) , we assume that F

is asymptotically stable and that there exists a tI < T such that in
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[tl,T ] , HetFx(0) is very small comparedwith

t

I HeTFGu(t-_)d_
0

That is, we assumethat on [tl,T] ,

z(t) = rItHe_FGu(t-r)dT + v(t) ,
Q

0

and we then try to determine h(t) such that

T t 2

o -- [ _(r)u(t-T)dr - z(t)] dt

tI 0

is minimum.

Basically we use a

of functions {£i(t)}

combinations of the £.
l

(7.2)

Rayleigh-Ritz technique, that is we select a set

, which are "suitable" and represent h by linear

K

[(t) = [ Si£i(t)
i=0

2
This reduces the problem to determining 8 such as to minimize o .

t K t

i=O
0 0

£i(_)u(t-_)d_

We call the integrals above new functions

tfi(t) = £i(r)u(t-_)dT

0

(7.3)
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Then it is the (nonorthogonal) basis set fi(t) upon which we

will project z(t) to determine B • We are fitting the function

z(') on [tl,T] with the expansion

K

8ifi(') •
h=0

K

Naturally we are interested in the linear independence of {fi} ° •

In addition we should determine whether or not the system (7.1) can be

uniquely determined from a knowledge of only z and u • These two

questions are intimately connected as the development in 2 will show.

K to be independent, however, we canAssuming the functions {fi} °

proceed.

Rewriting 7.2 in terms of the f.(t) gives
l

T 2

= z(t)- [ Bifi(t) dt ,
it0

tI

which is then solved for the minimizing 8 vector.

(7.2a)

2. Numerical Implementation•

A) The convolution integration in 7.3 is performed by Simpson's

Rule, obtaining fi(t) at N+2 - INTST points on [t_ T]. To expedite

the mechanization, we insure an odd number of points on the interval

[0,t I]

which

B)

by making INTST odd, and we make the number of points at

fi is computed even by making N odd.

(7.2a) is minimized by using a generalized inverse routine to

solve the linear finite system

[fij]8 = z.l
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where f.. = f.(i6) and z. = z(id).
13 3 l

3. Linear Independence of {fi (t) }K .o

In order to investigate this we will consider only u(t)

the type which we use, i.e.

of

M
k

u(t)= [ % sin[ t , ICkl--1
k=l

(7.4)

We further assume that all £.(t) are impulse responses of asymptotically
l

stable, linear stationary dynamical systems; this is in fact a sine qua non

for being "suitable" to our problem. Because we are looking only at

steady-state output z(t) , t _ tI , after initial transients have subsided,

the analysis is somewhat simpler. For any asymptotically stable system

k

(7.1) the steady-state output y(t) for input sin _ t is

k k

y(t) = _ sin y t + Bk sin y t.
(7.5)

Since the Z.(t) are impulse responses, fi(t) may be thought of
1

as the output of a linear dynamical system to the input u(t) and there-

fore is the sum of terms like (7.5).

Therefore we have

Lemma: A necessary condition for the function

K+I

independent is that in (7.4), M _ --_- .

Proof: {fi(t)} K is a set of vectors from the
o

spanned by

{f.(t)}K to be
l O

2M dimensional space

k{sinyt , cosyt}
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therefore if K + i > 2M , the set is linearly dependent.

In fact, we can write the vector

f

f
o

fl

m

fk

as f=Av (7.4)

where

V

a
m

sin ½ t

cos ½ t

sin ½ t

M

cos _ t_

and A is a constant matrix. Then

there exists a constant vector p _ 0

{fi} _ is linearly dependent if

such that

p'f --0

Since A is (K+I) by 2M it is clear that such a vector exists

if K + i > 2M .
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It is tempting to hypothesize that the
K+I

independent if M >.-_- and the set {_i }K

Unfortunately this is not true.

Counterexample:

{fi} _ are linearly

is linearly independent.

o

and

_i =
(n-l) (_2+i), e-_t +

(n-_) (12+1)

(l-U)(n2+l) e-nt

(n-_)(_2+1)

have the same steady-state response to

for t large .

Since this implies that the systems

sin t , i.e., fo(t) _ fl(t)

H--I F---I G=I

and

[-_ 0 ]
H-- [1,1] F = G--

0 -n

(n-l)(_2+i)

(x-_)(n2+l)

(n-_) (12+1)

have the same steady-state response to u(t) = sin t , it is clear

that we do have problems also in determining the system uniquely solely

from input-output information.

Both questions can be answered easily however with the help of the

following.
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Corollary: Let h(t) be the impulse response of a c.c. - c.o.,

asymptotically stable linear stationary dyanamical system. Let

h(=) = p(s 
q(s)

Then the steady-state response f(t)

that is

of the system to u(t) ,

tf(t) _ h(t-T)U(T)dT

0

for large t ,

is zero if and only if u(t) satisfies the homogeneous differential

equation represented in the frequency domain by

p(s) ,

i.e., £-l(p(s)) u(t) = 0 .

Proof: This is a corollary to the much more general theorem by Leonard

Weiss [i].

Applying this to our case, we take the Laplace transforms of

{£i }K , {_i} _ and compute

p(s) K Pi

q(s) i=O l qi

If deg p(s) < 2M then the functions

set. In particular :

form a linearly independent
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Case i: The laguerre functions,

Pi(s) = Pi(s)
qi (s) (s+l) i+l

Therefore deg p(s) < K + I , hence 2M _ K + 1 is both necessary

and sufficient for linear independence.

Case 2: The Kautz function [2],

For the Kautz functions deg p $ deg PK < K + i for K odd

and deg p = deg PK+I = K + 2 for K even, In any case then,

we have the same result, 2M _ K + I is both necessary and sufficient

for linear independence.

Case 3: Arbitrary pole selection.

If we select

-I. (t)
2.

= e COS W. $£2i z

-_.(t)
1

£wi+l = e sin w.tz

for i = 0,n; w i + 0 ,

-1 .t

and £. -- e l for i = 2n + 2,...,K
l

with w i + wj for i + j and li + lj for i + j , i , j >_ 2n + 2

then deg p(s) < K + 1 . Again we have that 2_[ >.K + 1 is both

necessary and sufficient for linear independence.
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. Uniqueness of Identification.

We wish to determine what system estimates

K

h(t) = _ _i_i(t)
i--O

K , K+ i.< 2M ,
obtained with fixed M and a set {_i} °can be

such that {fi }K are linearly independent.

The counterexample in (3) can help our thinking about the problem.

Letting k -- i , _ = 2 , n = 3 , we find that the systems

H I = i F1 = - i G I = i

and

H2 = [i,i] F 2 = _ G2=

have the same response to u(t) = sin t . However they have impulse

responses

-t 1

hl(t) = e ' hi(s) - s+l

and

5

h2(t) = 5e-2t - 5e-3t ' h2(s) -- (s+2)(s+3)

Figure 1 shows hi(t) and h2(t)

1
-- we haveIn their expansions in s
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hl(S) _ [i, -1, i, -i, i,...]

h2(s) _ [0, 5, -25, 95, -325,...] •

This shows that we can get an exact fit of the Input-output

relations and be very far wrong in the impulse response. We attempt

to circumvent the problem by increasing M. For instance if in

the previous example, we let u(t) = sin t + sin 2 t , then we obtain

the algebraic system

2 3

5 I0

1 1

5 - 10

2 3

8 13

2 2

8 13

1

2

1

2

1

5

2

5

Here 80 and

-2t
& " e and
0

are

81 are respectively the coefficients of the functions

£i = e-3t which will minimize (7.2). The optimal 8i

B = 4.01572
0

B1 = 3.62098

and the impulse response appears in Fig. i.

The most unfortunate aspect of the procedure is that the error

2 I¢ = (h(t) - l_t))2dt(

0
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is not a monotonic function of o2 , in 7.2, for fixed K °

2
instance in this case the vector which minimizes _ is

For

81=2.5

The impulse response for this fit appears in Fig. 1 also.

2
Note, in fact, that _ does not necessarily decrease for

fixed M as K increases.

3
with So "3 ' 81 -, 0

2
In fact we can obtain a better ¢ fit

2
which is the minimum o fit for

K - 0 , M - 1 than by minimizing o
2

for K = 1 , M = 1 .

Remark:

I (e_t _8o e-2t -81e-3t)2dt
0

ISBo2+ 24Bo_1 - 4o_° + io_ - 3oB1 + 30
60

Now we see that there are two aspects of the uniqueness question.

Let us take an asymptotically stable system (7. i) of order !n and record

its steady-state output for 2M _ n . Then there is only one system

of order n which will give that output.

On the other hand if the eigenvalues are unknown and we use some

arbitrary set of functions {£i(t)}_ then it is not necessarily true

that we are fitting the impulse response more closely as K increases

with M remaining fixed, even though the functions {fi(t)}_ are

linearly independent. In fact, if the characteristic polynomial of the
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unknownnth order system has no roots in commonwith the _i(t),
2

then when n + K + i > 2M , we can make o - 0 and still have a

2
large ¢ •

Before attempting any conclusions about uniqueness or operational

procedures we should obtain a better idea of the mathematical principles

which underlie the process we are using. That will be done for a

slightly idealized variation in the development which follows.

The idea mayhe stated easily. Instead of minimizing liE8 - hll ,

where

L = [4 (t) £K(t)]

we are minimizing IlLS- hlIQ, where Q

symmetric kernel.

What our program does is to minimize

is a non-_egative definite

2o -- [FB - z(t)]2dt

t$

where F is the K + i - component new vector with

t

Using the definition of

u(t-_)£i_l(_)d_

F we can rewrite a 2 as

fl [BL (T)-h (_) ]u(t-m) u(t-s) [(s) 8-h (s) ]dsdzdt

tI 0 0
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Wenow assumeexplicitly that L(t) = 0 = h(t) for

and that t I B t 2 . Interchanging integrals then gives us

t2 t2 T

0 0 tI

t2.[t2= I [8L (_)-h (T) ]Q(T, s) [L (s) 8-h (s) ]dsd_

0 0

Q(T,s) is clearly non-negative definite symmetric. Furthermore,

with

M

_(t) = _ sin k _ t
k=l

2_

if T - tI is a multiple of --_ , then the components of u(t) are

orthogonal, and 2 associated with _+l(t) is less than UM(t) -

(This follows from the fact that the eigenfunctlons of QM(S,t)

with nonzero eigenvalues are orthogonal and coincide with a subset

of the eigenfunctions of QM+l(S,t) .)

One thing that is not clear from this is the speed with which

ilLS- hll ÷ IILS- hll •
Q

Treated as a periodic function, each component of L has a dis-

continuity at zero and therefore has considerable high frequency power.

In fact because of this discontinuity, we cannot prove simply that

IlLS- hll + IILS- hll
Q
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i
and we cannot expect convergence better than

We can draw somerecommendationsfrom this analysis for use in

our operational procedures.

i) The input should contain a constant.

2) The lowest frequency, w , appearing in

T - tI = _(N + 1 - INTST)

2_
is a multiple of -- •

u should be such that

3) It might be a good idea to try using some £i(t)

t = 0 , to avoid the discontinuity.

It is interesting that when

M
i

u- V+ _ sin k w t
k=l

which are zero at

then the procedure, in effect, takes the Mth order

A

approximant L of L and minimizes IILB- hll •
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04129168 80180 LIST

SJOB MMI MATHAI-RZ3 U31142 U418 T418 9106 C 010 005
'N HDG THIS PROGRAM REFERENCES MATH-PACK LIBRARY

.................I ASG A=$MATHP
i XQT CUR

...............IN A
tiT FOR MAIN

-_ C GIVEN THE INPUT-OUTPUT DATA OF A PHYSICAL SYSTEM, TNIS PROGRAM

C APPROXIMATES TNE C0_FF]cILNIs OF TH_ iMPULSE R_SPUNSE FUNCTIUN

C PROGRAM INPUT
.........U .....................SYSTEM---iNPUT-OATA --

C Z
.................C "......N................

C

C .......... K

C

C KS

C

C DEL

C TSCALE
.............. C_ ........

C MAX

SYSTEM OUTPUT DATA

INTERVAL SIZE -N+I DEF-iNES-t-H-_"-N0..- OF _)OINTS-USED

MAX. VALUE OF N IS 500
K+I DENOTES THE ORDER--0-F---T-HELE----AS-T---SO-UAF_-ESFIT

MAX. VALUE OF K IS 29

KS+I DEFINES THE NUMBEROF-SI_-COEF-.-DE-s-IRED

MAX. VALUE OF KS IS 29

ACTUAL TIME INCREMENT OF L)ATA POINTS

SCALING FACTOR USED ON TIME

TO SCALE TIME b_TWEEN 0-I-osE--TSCI(L-E--F-INA-L TIME

MAX NO, OF ITERATIONS ALLOWrD IN rVALUATING TrtJ- INVERSE

..............C .... ELEAST .........ACCURACY LEVEL DESIRED IN THE--iNVERSE

C KPF =1 PRINT F MATRIX

C =0 DO NOT PRINT

C ........Kpz ...............=1 PRINT Z VECTOR
C =0 DO NoT PRINT

C " KPF1 =I PRINT INVERSE OF F MATRIX
C ............ =0 DO NoT PRINT ....................

..............C .......KPI ...........=i PRINT IDENTITY MATRIX TO TEST INVERSE
C =0 DO NOT PRINT
C KPITER =l PRINT NO. OF ITERATIONS AND MAX. ERROR IN INVERSE

C =G-D0NO--PRINT

C KPRES =1 PRINT R_SIDUALS = ZVEC-FMAT_BETA

C...................... =O-DO NOT-PRINT

C KPB =l PRINT BETA VECTOR

-_ - -- =0 DO NOT PRINT

COMMON/TEN/U(1603)

COMMON /SCALE/ P

COMMON /NORM/ ERR_INTST

COMMON/FKIF(8OI,20},PHI(2,I603},DELT,NPI_KPI,FP(801_20}

DIMENSION AFLAG(20},ATEMP(20)

DIMENSION SK(30),_ETA(20).Z(1603}PUNIT(20,20)

DIMENSION DPHI(20}

DiMENS|ON--E(3J-,-D(3}
DOUBLE PRECISION PHI,BETA,SK
-INTEGER COUNT

C FORMATS

100 FORMAT(3110,_2Ei0.2}

101 FORMAT(IIO,DIO.2}

I02-FORMAT(Til0) ...............
200 FORMAT(IH1,45H DYNAMICAL SYSTEM MODELING OF HUMAN OPERATORS///

....... II8H I- LINEAR MODELS///l//62H NO. OF--INP-0-T--_0T-PUI POINTS USED IN

2LEAST SQUARES FIT - N+I = ,151/40X,22H ORDER OF FIT - K+I = _131/

.......... 328X,34H NOw OF SK COEF-.-DESIRED -L KS_I--=][377_//}
201 FORMAT(BX,30H SIZE OF TIME INTERVAL USeD = ,F10.51/33ff TIME INCREM

iENT OFDATA-POINTS-=-TFI0.5112X,31H SCALIN_ FACIOR UbcO ON TiM:=

2_FIo,5119X_2_H SCALED TIME INTERVAL = ,FIO._/I_X_2bH SCALkD TIM_ I

.................................. 65



04/29/68 80/80 LIST
3NCREMENT : ,FIO.51111/I)

202 FORMATISIH MAX. NO° OF ITERATION ALLOWED TO O_TAIN INVERSE = DIS//

....... II4X,37H ACCURACY LEVEL DESIRED IN INVERSE = ,EIO.2) .......
I50 FORMAT(IHI,27H F MATRIX - PRINTED SY ROWS)

151FORMAT(///4H ROW,13//(SE20oS))

I52 FORMAT(IHI,18X,IHI_I6X_4HZ(1)/(IOX,IIO,E20°8))

153 FORMAT(IHI,28H F INVERSE- PRINTED BY ROWS)

154 FORMAT(IHI,B_H IDeNTiTY MATRIx :-PRiNTED_Y--ROWS)

155 FORMAT(IHI,18XtlHK,IBX,7HbETA(K)/(10X,IIO,D20._))

....- 156 FORMAT(IH1,25H SK-VECTOR OF SCALED-TIME//19X,1HI,15X,SHSK(I)/

1(10XtI10,E20.8))
! -- ...............

162 FORMAT ( E13.8 }

157 FORMAT(///1BH NO. OF ITERATIoNs;IS//-/EIHMAX.-ERRoR,VX, D_0.8)

158 FORMAT(IHI,2?H SK VECTOR OF ORIGINAL TIME//19X,lHI,15XpSHSK(I}/

l(lOX,IlO,E20.8))

159 FORMAT(IHItI8X91HI,I1X,9HRESIDUALS)

160 FORMAT(IOX,IIO,E20°8)

161FORMAT(//,SX98H INTST= ,15)

401 CONTINUE

-COUNT =_i

IMAX = 3

--- _(3) =-+.IE+30
D(3) = +.1E+30

P = .4132223

P=2°O
P-= .5 ....."

P=4°O

P=2.?

P=1°4641

P = i,i

P=l.O

READ 100--,N_,K ;-K_-_-D-E-_,-T-_CAL--CE--.....

READ 162 , STDEV

READ 103, INTST

103 FORMAT(15)

N =N/2 .....
N=2*N-I
INTST---W-I_TS_/2

INTST : 2*INTST + 1
IF (INTST.LE.5}-INTST:5

DELT : DEL/TSCALE
READ 102 ,KPF,KPZ,KPFI,KPI_KPITER,KPRES,KPB

DEL : DELT*TSCALE

C GENIO--SUBROUTINE GENERATES THE SYSThM I_PUT-OUTPUT"DATA FOR A TEST Ci

CALL G_NIO (N,DEL,U,Z,STDEV,SSS,INTST)

551CONTINUE
C THE LEAST SQUARE SOLUTION IS O_TAINED bY SOLVING THE MATRIX

C ....EQUATION FMAT*BETA=ZVEC

C COMPUTE FMAT

DELT=DEL/TSCALE

T2=I°O/DELT-

TI=DEL*N

TT=DELT*N

NPI=N+I

KPI=K+I
KSPI=KS@I

...................PRINT 200,NPI,KP1,KSP1 ......

.............66 .........



04/29/68 ......... 80/80 LIST ................
PRINT 201 ,T1,DEL,TSCALE_TT,DELT
PRINT 161 , INTST
CALL FKSUB
NR=NPI+I-INTST
CALL G I NV2 ( FP ,UN I T,AFLAG, ATEMP,801,NR,KP1 )

C COMPUTE BETA VECTOR
23 DO 71 I:I_KP1

BEiACi =0.o
DO 70 J=lpNR

• L=INTST-I+J-

BETA(1)=BETA(1)+FP(J,I)*Z(L)
70 CONTINUE

71 BETA(1)=T2*BETA(I)

C COMPUTE ERROR IN LEAST SQUARES FIT

CALL CHECK(BETA,FtZ3DELT,NPltKP1)
......29 CONTINUE

ERR=ERR/SSS

- PRINT 155,(L,BETA(L}-_L=l,KPi} ....
C COMPUTE SK VECTOR

DO300I = I , KSPI

IMI = I - 1

CALL DKPHI-(-KPI _---i-Mi-_-_FHi--i--
_K(1) = O.

DO 301 IXI =-Z--9-KPI .......
SK(1). = SK(1) + BETA(IX1) * DPHI(IXI)

30i CONTINUE ........

............. 300 CONTINUE
DO 95 I=I,KSPI ......
IMl=I-1

95 SK(1)=$K(i-)/(TSCALE**IMC}

402 FORMAT( 1H1,/,( 5X , 3HSK(,12,3H)= ,E15.8

1 E15.8} )
PRINT 403 , N , K , TI , DEL

403 FORMAT (1H1,//,9X,2HN=,I4,9X,2HK=,I4,gx,14HTIM_ INTERVAL=,F8.5 ,

I 9X,15HTIME INCRENENT=,F8.5 )

404 FORMAT(///,(SX,3HSK(,12,3H)_-,-Oi5.8}}

PRINT 404, (I,SK(1),I=I_KSPl)

PRINT - 550,-P%ERR
GO TO 2O3
IF (COUNT)--510 • 520 _ 530

510 E(1) = ERR

D(1) = P

PRINT 550, P, ERR

5_O--FORMAT(//SX_'-_H----P"'= , _15°8,5X, 6H "E_R' = , E"I'5,8 }

GO TO 540

P = l.l*P

COUNT = COUNT + 1

GO TO 551

520-E(2|- = ERR

D(2) = P

COUNT--= COUNT + 1

PRINT 550, P, ERR

IF ( E(1) .LT. E(2) )

IMIN = 2

P = l.l*P

GO TO 551
540 IMIN = 1

P = -8*P

, 5X ,WHRSK(,12,3M)= ,
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o4/29/6 -- 8o/8o LIST
GO TO 551

530 PRINT 550; ..... I:i .... , -ERR
IF ( ERR .GT. El IMAM) ) GO TO 203

E(IMAX) = ERR

D(IMAX} = P
IDMIN =--1- -

DMIN = D( i }
IDMAX = I

DMAX = D(Z)
DO 580- ixz -=.........2,3....
IF (DIIXI) .GT • DMIN ) GO TO 581

IDMIN = IXI

DMIN = D(IXI)
581 CONTINUE

IF (D(IXl) .LT. DMAX } GO TO 580

IDMAX : IXl

DMAX = D(IX1)

580 CONTINUE
IMIN : 1

EMI N ....=----E(I)
IMAX = I

EMAX = E(1}

DO 582 IXl = 2,3
IF ( E(IXI) .GT*-EMIN) GO TO 583

IMIN =.IXI
...........................

EMIN = E(IXI)

583 CONTINUE

IF (E(IXl} ,LT. EMAX ) GO TO 582

IMAX = IXI

EMAX = E(IXI}

582 CONTINUE

RELERR = (EMAX-_--EMiN-i/-EMIN

IF ( RELERR .LT. 0.05 ) GO TO 203

X =-E(1) * ( D(2)*'2-D(3)*'2-i--_-E]-2--)_-'-(---D(--I-)**2 -D(3)*'2 )

.....................i -E(3) * ( D(1)**2- D(2)*'2 )
Y = ( E(1) * ( D(2) - D(3) ) - E(2) * ( D(1) - D(31 } 4-

1 E(3) * ( D(1) - D(2) ) )
XI = [ ( D(1)-D(2)) * (D(1)-D(3) ) * ( D(2]-D{3] ) )

-_ = •

_. IF ( (Y/XI)___,,GE. _0 } GO TO 552
PRINT 553

553 FORMAT(28H SECOND DERIVITIVE NEGATIVE

GO TO 203

552 CONTINUE

Y-=--'-;5*x / Y
IF ( ( DMIN .LT. Y ) .AND. ( Y .IT.

X--_ .... -(-'X*OI2-I-/Y + X }/XZ
IF ( X .GE. 0. ) GO TO 570

P -'_-i' I*DMAX

GO TO 55Z
570 P =--,9*DMIN

GO TO 551

560 P = y
GO TO 551

203--CONT INUE -
READ 400 , NCASE

400 F-ORMAT(i2}

IF ( NCASE .EQ, 0 ) GO TO 401

1

DMAX ] } GO TO 560

& ,.,
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0_/29/68 .......
STOP

80/80 --L-i$-T

END

o
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04129168 80180- LIST

' I.I__EOR SUBI ................
SUBROUTINE CHECK(BETA,F,Z,DELT,NPI,KP1)

COMMON /NORM/ ERR, INTST

DIMENSION BETA(20),F(801,20),z(i6-03)

DOUBLE PRECISION BET.A.;ERROR_,TERM
ERROR-'= O. 0

DO 1 I = INTST,NPI

o

2

1

TERM=O,O

LI=I+I-INTST

DO 2 K=I,KPI

TERM=TERM+F(LI,K)*BETA(K)

TERM=DELT*TERM

ERROR = ERROR + ( Z(I} - TERM }

CONTINUE

ERROR = SQRT(ERROR/(NPI-INTST)}
ERR =_ERROR

RET9RN
END

7O



04/29/68 80/80 LIST
'IT FOR SUB2

SUBROU T-I-N-E--GEN I()---iNP ,H ,DU, DZ, ST DEV, SSS, INTST )

............ C..... DU ............ GENERATED INPUT__. DATA .....
C H TIME INCRF-t4ENT USED IN GENERATING L)ATA

C NP=I CORRESPONL)S TO THE 0-TH POINT

C.........NP ........... NP+I DENOTES THE-_I-o. OF POINTS DESIRED

C SUBROUTINE TO GENERATE SYSTEM INPUT-OUTPUT DATA

C DZ ......... GENERATED OUTPUT DATA

DIMENSION DU(1603),DZ(1603)
DIMENSION AS( 15)9AC(i5 _)

DIMENSION S(15),C(15)

SS =0

FPER= (NP+I-INTST)

FPER-FPERWH/12.

FFREQ=2._'3. 1415926/FPER

AC0=.25

IORFOS=10

DO 5 K=I,IORFOS

XK = K

XOM=FF REQwXK

C FOR 1/(S+1)_e2

DENOM = XOM_4.+2._-XOM_W2,+I.

AS(K)= (1.-XOM_2. )/DENOM

AC (K) =-2._XOM/DENOM

SS = SS +. AS(K)_2o + AC{K)_2.

5 CONT INUE

SSS -- SQRT(SS)

PRINT 100 , SSS , STDEV- -
i00 FORMAT(///,SX,14HOUTPUT NORM = , E15°8,//I_SX,25ffNOISE TO SIGNAL

1RATIO = ,E15.8,///)-

101 FORMAT(///_SXtI3HNOISE MEAN = ,E15.8,///,SX,17hNOISE ST° DEV. = ,

IE15.8,///)

102 FORMAT(///,5X,5HNOISE,//,(IS,2XgEI5.8))

.... SD = SSS_STDEV .............

IF (NANA.EQ.381) GO TO 6
-IA=I ............

KA=2-*18+3

NANA=381

CA = 2,_35
6 CONTINUE

PRINT 997_IA

997 FORMAT(5X,48HSTART-ING------INT_GER

IB=NP+2-1NTST

IB=IB/2

DO 4 KB=I01B

IA ABS(IAwKA)

TI=FLOAT(IA)/CA

IA-=-ABS(iA*KA)

T2=FLOAT(IA}/CA

T9=SQRT(-2._ALOG(TI))

T8=6.28318531wT2

KC=2*KB+INTST-i

DZ(KC)=SDWT9_SIN(T8)
DZ(KC'I-}=SD*Tg*COS(TS)

4 CONTINUE.

XMEAN = 0o
NPI = NP + I

FOR Ti-IIt. NOI_E BU R.ST : t_III)----

..................... 71___ - .......



04/29/68 80/80 LIST
NPPI-NP+I

DZ (1 ) SO
X=O°
Y=O°
GO TO 3

3 CONTINUE
PRINT 102t (I,DZ(1),I=800,900)

V=O.

W=O°
a ..................

DO 27 I=INTST,NPPI

V=V+DZ (I )

W=W+DZ (I)*-2.

27 CONTINUE

AVE=NPPI-INTST+I

V=V/AVE

W=SQRT (W/AVE)

PRLNT 101, V,W

DO 28 I=INTST,NPPI

DZ( I )=DZ( I )-V

28" CONTINUE

DO i I=I,NPP1
TI "(I-I)*H

DO i0 K = I, I0
XK = K .........
XOM=FFREQ*XK
IF(i.LT'-INTST} GO TO I0

C(K) =COS(XOM*T I )

lO S(KI=SIN(XOM*TI)-_

DU(I } = $(I}+S(2)+S(3)-S(4)+$(5)-S(6)+S(7}-S(8)+S(9]-S{i0)+.25

- X:X+DZ(I) ....
Y=Y+DZ ( I )*-2°
--IF-(-I,LT.INTST )_--T_ I

DZ(1) = AS(1)*S(1)+AS(2)*S(2)+AS(3)*S(3)-AS(4)*S(4)+AS(5)*S(5)

I -AS ( 6 ) *S (-6}--#A-s(7 ) _--S-(-7-)-._AS (8) _-Si- 8 ) +-AS ( 9 ) *S ( 9 ) -As-(].-O-)*-S ( I 0 )
2 +AC(1)*C(1)+AC(2)*C(2)÷AC(3)*CI3)-AC(4}*C(k)+AC(5)*C(5)

3--AC (6 )*C-(6 )+A-C_(7 }*_C-(_/}-;-;_CTS-)*C (-8}-+-AC-{9)*C-T9)--AC (i0 )*C (i0 )+DZ (I )

4+ACO

I CONT INUE

X=X/NPP1

Y=Y/NPPI

Y--SQRT (Y }

PR INT-IO-I, X,Y

RETURN
END
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04/29/68 80180 LIST
'IT FOR SUB3

SUBROUTINE FKSUB

COMMON/TEN/U(I603)

COMMON /NORM/ ERR, _NTST

COMMONIFK/F(801,20) tPHI(2,1603),DELT,NPI,KPI,FP(_01,20)
.............. DOUBLE PRECISION PH_ .....

" DO 1 I=I,NPI

T=( I-i )*DELT

PHI(1,I} = PHIl(T}
PHI(2,I) =- PHi2(T)

1 CONTINUE
L I=NPI-INTST_Cl

LI=LI/2

DO 2 K=I,KPI

KMI=K-I

DO 3 L=I,LI

J i- INTST÷2*L-4
Cl=O

C2=0

Sl=O

82=0
DO 4 J2=3tJI92
J3=Ji-J2+3
CI=CI+PHI( I_J2)_U(J3}
C2=C2÷PHI ( 19J2 } _U(J3+I )
8 i:BI+PH z(i $i i*0( J3-z }
82=82+PHI ( ltJ2+l )*U(J3)

4 CONTINUE .........

J4=2_L-I

JS=2_'L
F(J4tK)=(PHI(1,1)'x'U(JI+2)+PHI [ltJl+2)_'U(i}÷4._'_l+

12-._ci+4.-wPHI-( it-2)*U(Jl+l ))/B.
FP(J4,K)=F(J4,K)

F (J 5, K } (PH !(1-,i_)-_U(_J-_3-j_-PH--I"_;J i+2 j-_(--2)"$A-_2 +-_i _C2

I+4._PHI (1,2)'_U( Jl+2 )}/3,,

FP(JS,K}=F(J5 ,K)
"_-"-CONT- I NU E '

N = K
...... DO 5 ZJ =--1--*---NPI

T = (IJ- 1 } "_ DELT
CALL RCSN-( PHI;--IJ---'_--N ,"T }

5 CONTINUE
E" CONTINUE--"

100 FORMAT (SX,6D20-8 }

RETURN

END



r- 04129168 80/80 LIST
tiT FOR SUB4

SUBROUTINE GINV2 (-A,U, AFLAG;ATEMP_MR,NR_NC}
C THIS ROUTINE CALCULATESTHE GENhRALIZEO INVERS_ OF A
C AND STORESTHE TRANSPOSEOF IT IN A
C MR=FIRST DIMENSION NO. OF A.
C NR = NO. ROWSIN A
C NC = NO. COLUMNS IN A

L

C U IS THE BOOKKEEPING MATRIX.

C AFLAG AND ATEMP ARE TEMPORARY WORKING STORAGE. •
DIMENSION A( 801,20 ),U( 20,20 ),_F L-_G_2-SF_,XTE_-#(_ 5 }

DO ZO I=I,NC

D0-5--3-_-Y-; NC
5 U(I,J) = 0.0

I0 U(I,I) -_: 1.0

FAC = DOT(MR,MR,A,1,1)

- F_C = 1.0/SORT(FAC)

DO 15 I=I,NR

.............................15 A(I,I)=A(I_I)*FAC

DO 20 I=I,NC

20U(I,I):U(I,I}_FA_

AFLAG(1)=I.0

...............C ........DEPENDENT-COLTOLERANCE-FOR--N--BIT--FLOA?ENG POINT FRACTION

N=27

.............TOL = (i0. *-0'5_*N)%_2

DOI00 J=2,NC

......DOT1 _-DOT(MR,NR,A,j,j)

...... dM1 = J-1 . .
DO 50 L=l,2

DO 30 K=I,JM1
30 ATEMP(K)=DOT(NR,NR"A,J,K)

DO 45 K=I,JMI

DO 35 I=I_NR

35 A(I,J)=A(I,J)-ATEMP(K)*A(I,K)_AFLAG(K)

DO 40 I:Z,NC
40 U(I,J)=U(I,J}-ATEMP(K}*U(I,KI

45 CONTINUE

50 CONTINUE

DOT2 = DOT(MR,NR,A,J,J)

IF((DOT2/DOTI)-TOL) 55,55,70

55 DO 60 I=I,JMI

ATEMP(1)=O°O

DO 60 K:I,I

60 ATEMP(1)=ATEMP(1)+U(K,I)*U(K,J}

DO 65 I=I,NR ........

A(I,J)=0,0

DO 65 K:I,JMI-

65 A{I,J)=A{I,J)-A(I,K)*ATEMP(K)*AFLAG(K)

AFLAG(J)=0.0

FAC = DOT(NC,NC,U,J,J)

FAC=--I.0/sORT-(FAC}

GO TO 75
-70 AF LAG(J )- _--1. 0

FAC= 1.O/SQRT(DOT2)
75 DO 80-I=I,NR .....

80 A (I,J!.._=._A[I,J}*FAC
DO 85 I=I,NC

B5 u( j}.. _ui_hJj F c
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80/80 LIST

I

,,e

04/29/68
I00 CONTINUE

DO i30 J=ItNC

DO 130 I=I_NR

FAC:O,O

DO 120 K=JoNC
120-FAC=FAC+A(I,K}_U(J,K)

IBO A(I,J} = FAC
RANK=O

DO 132 J=ItNC
'RANK=RANK+AFLAG(J}

132 CONTINUE

--PRINT-133, RANK

133 FORMAT(//93XtTHRANK =

RETURN

END

,IE15.8)



&

|IT

C

04/29/68 .................. 80/80 LIST
FOR SUB5

FUNCT I ON DOT ( MR, NR-_-A-_jC_ KC 1
COMPUTES THE INNER PRODUCT OF COLUMNS JC

DIMENSION A(801_20)

_. DOT = O. 0 .................................
DO 5 I = I tNR

A( I ,KC)5 DOT= DOT + A(I,JC)*
-RETURN ...................

END

AND KC OF MATRIX A
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I 04/29/68 - ............ 80/80 LIST
I IT FOR SU86

SUBROUTiNE-[)KPt_-i--(--K-P1 , I , DPHI )
DIMENS£ON DPHI(1)
COMMON /SCALE/ P

C THIS ROUTINE CALCULATES THE I DERIVATIVE OF THE (J-l)
C ......... LAGUERRE FUNCTION AN{:) STORES-iT IN-UKPNI(J)

DO i J = i o KP1

IJ "- J- I

IPl - I.+i

• SUM -" 0.

DO 2 K = 1 , IPl
IX2- K- 1

IX4-- I - IX2

TERM = _COF(I,IX2} _ 6COF(IJ,IX4) _" ( 2. _" (-K+I) )
SUM ,= SUM + TERM

C

2 CONTINUE

IX -- ( IJ + I ) / 2

IX = IX-_ 2
SIGN----- I.

IF ( IX .EQ. ( IJ+/) ) SIGN "- I.

........ DPHI_(J)--,,-sIGN-_---S-C)R'F--(--2. * P } ._ ( 2, * P } * * I
1 CONTINUE

C
RETURN

SUM

END

_T ................

77



, j,

i

©
lIT FOR SUB?

FUNCTION BcoF--(--I--_ J )
XI = I

XJ = j

XlMJ : l-J

IF ( J .GT, I ) GO TO 3

..........IF-( I ,EQ, O )- GO TO 2

IF ( J .EQ. 0 ) XJ - I.

- . IF ( I ,EQ, 0 ) Xl-=-i,

IF ( (I-J} .EQ. 0 ) XIMJ :: 1.

_'_ .............................DO I K = I , I ...................,.g'

P : P * ( XI / (XIMJ * XJ) )
IF ( (I-K) ,GT, 0 ) Xl : XI - i,

"_ IF ( (J-K) .GT. 0 } XJ = XJ - i,
..,I

IF ( (I'J'K} -,GT,--0-}----XIMJ--,,--XIMJ - .1.,
1 CONTINUE

""_ "...................2 CONTINUE ....................

04/29/68 80/-80--LIsT ..............................

BCOF : P

..........................RETURN
f',,_, ' _ CONTINUE
.J

......................BCOF - O,
RETURN

0 .............................END -

J

,...,-_
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.............. 04/29/68 80/80 LIST

'IT FOR SUB8
-FUNCT IoN PHi i (T-)

0 C ***** DEFINE THE FIRST ORTHOGONAL FUNCTION ****_

.......................... COMMON ISCALE/--P ....................
PHI1 : $QRT( 2, * P) * EXP( -P * T )

O .............................. RETURN ....
END

©

O

O
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?

04129/68

................... 'IT FOR SUB9
80/8O LIST

C
FUNCTION PHI2(T)
**w*_ THIS SUBROUTINE DEFINES THb SbCOND ORTHObONAL FUNCTION ***_

COMMON /SCALE/ P

PHI2 = SQRT( 2, * P ) * ( 2,*P*T - 1. ) * EXP( -P * T }

RETURN
END

-,% -.................................................
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. m

04/29/68
°IT FOR SUBIO

80/80 LIST

SUBROUTINE RCSN ( PHI , I , N , T )

C ***** THIS SUB. DEFINES THE RELURSION FORMULA FOR THE GENERATION
...................C...... ***** OF HIGHER ORDER ORTHOG'--FNS---***_* ....................................

COMMON /SCALE/ P

-DIMENSIONPHI-(2,160_)

DOUBLE PRECISION PHI,TEMP

XN = N

TEMP =(( 2,,*P*T - 2,*XN - 1,) * PHI(2tl) - XN * PHI(ltI) )
................ _-z / C xN- 4:- z. }

............PH!(I_I) = PHI(2,1)
PHI(2,1) = TEMP

RETURN
-END.....
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Appendix B

The Subroutine Micare
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SUBROUTINE MICARE ( SSUBR, N, TOLl, NST, H3, IDERK)

I. Purpose

We are given the N vector S - {sk} and wish to find an

r-dimensional, constant linear dynamical systemp [c, _, Y] in companion

for_with c = [I, 0, ..., O] such that, approximately,

c_ k-I - sk k " i, ..., N •

This is the primary task of subroutine MICARE - the implementation

of the B. L. Ho procedure.

In addition, however, it calls subroutine CPC (see MSG PD-67-I02)

in order to obtain an r-dimensional, constant linear dynamical system

[c, A, b] in companion form, with c - [i, 0, ..., O] such that

koA
c e b = Sk+ I, k = 0, ..., N-I.

Essentially CPC finds the continuous-time system [c, A, b] from

which the discrete system [c, _, y] arises. This is under the assumption

that the input vector s is the discretized (at interval o) time history

of the impulse response of some linear constant dynamical system.

It can happen that the vector s contains the leading coefficients

of the expansion in powers of i/s of a transfer function (the laplace

transform of the impulse response). This is, in fact, the originally planned

mode of operation for the procedure. In such a case the call to CPC is

superfluous. The application for which MICAREwas written usually requires

the use of CPC, however, and furthermore CPC provides the eigenvalues of

_, so no provision was made for avoiding the call to CPC.
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II. Operations - Callln_ Sequence

The vector s is entered in the array SSUBR: N, the dimension of

s, is given in N; TOLl is a zero tolerance used in subroutine RAKAR,

for details see MSG PD-67-I03; NST gives the starting dimension of the

square Hankel matrix

s1

H - s 2

m

s2 s3 -

s3 s4 -

-- m

used in the B. L. Ho procedure (see Procedure and Mathematical Analysis

below); the discretlzing interval o is given in H3; the maximum rank

allowed, r, is given in IDERK.

Language is FORTRAN IV, no tapes are used.

The dimensions in MICARE and its required subroutines allow for

N to be 50, the Hankel matrix to have dimension 20, and r (contained in

IDERK) to be 15.

III. Printout

A fair amount of intermediate printout is given because it was

required in the original application.

The zero tolerance, TOLl, is printed.

The input vector S is printed.

The dimension of the Hankel matrix which was used for computing the

realization is printed as KMI.

The vector S as computed from the realization is printed as

ESTIMATED VECTOR.
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A

If a larger-than-expected error between S and S is encountered,

see VI and VII for details, a print IFLAG is made indicating the component

in which the difference occurred.

After the system is put in companion form, S is recomputed to

esta_llsh the accuracy of the similarity transformation.

The output coefficients c = [1, 0, ..., 0] are printed.

The system matrix % in companion form is printed.

The input coefficients 7 are printed.

The program then transfers control to CPC which itself generates

output (see MSG PD-67-I04) terminating in the logarithm system [c, A, b]

in companion form.

Control returns to MICARE which, if IFLAG was not printed, will

print a statement that the realization was successful. If IFLAG was

printed it returns to increase the order of the Hankel matrix. If this is

not possible, a message is printed. If the matrix was enlarged because of

an IFLAG print but the rank did not increase, the message,

NIX EQUALS ONE AND RANK EQUALS RK

will be printed.

IV. Subroutines

The matrix decomposition routine RAKAR (see _SG PD-67-I02)

The system logarithm routine CPC (see MSG PD-67-I03).

The S generating routine SVCAP.

The inner product function DOT (for RAKAR).

The polynomial root solver FYu_LER.

The inversion routines MATINV and MINV.

V. Restrictions and Comments

None
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Vl. Procedure

Circled numbers, e.g., @ are external formula numbers in

the FORTRAN source program.

Set the maximum dimension of the Hankel matrix to N/2.

Put NST ÷ K, 0 ÷ NIX, 0 ÷ RK, 0÷ IFLAG.

+

® If IFLAG _ 0, go to @ •

Q Set up the K-dimensional Hankel matrix H and call RAKAR for

the rank RANK. If RANK - RK, go to @ .

@ Put 0 _ NIX, RANK+ RK.

Using other output from RAKAR, define TR and TL such that

TL H TR - Ir

where I is a RANK-order identity matrix. If the order K of H is
r

not maximum, go to @ ; otherwise print

RANK NOT STABILIZED BUT WE HAVE REACHED MAXIMUM DIMENSION.

Then set K + i ÷ K and go to @ .

K + 1 ÷ K

If K _ max dimension, go to 8 .

RETURN

* * * * * * * *

If NIx o, go to @

If RK - 0, go to
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®
of the

Put K - 1 KMI and print this number which is the dimension

H used for the representation•

Set up the matrix and vector

H* i

m

s2 s3 s 4 -

s3 s4 s5 -

sl L

• I

I

• I

_SKMI J

and compute

and

_* = TL H* TR ,

c* = h' TR ,

Y* " TL h .

Call SVCAP to produce

A ^ A

S = {sj} where sj+ I
" c* _*J b*, J " 0, ..., N-1.

Let

EPSIL - max 0- 7 2 sj - sj

I.<J.<2K-I ' i + _j /

If RANK is governed only by a small TOL1, that is, not constrained by IDERK,

then EPSIL should be reasonably small.

+

/
We now check, for J = 2K, ..., N-l, if i EPSIL

\
always positive, If it is not, then for the first index, L, for which

it is negative, we set
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L+2
IFLAG = -- .

2

This IFLAG is the dimension of the smallest Hankel matrix which

will include the offending term and thus give a more accurate representa-

tion, either in terms of rank, if that is free• or in more evenly distributed

error.

Notice a print of IFLAG indicates an error in matching the

2*IFLAG-I or 2*IFLAG-2 element of S.

+

Whether or not IFLAG is printed we now prepare to put the system

in companion form. If the system order is one, we ship this transformation•

going to @ .

+

Because the system is a minimal realization of a transfer function,

it is completely controllable and completely observable.

We thereform form the matrix

c*

c* _*

T ,-

m

c* _,RANK- 1

invert it and form

- T #* T-I

c- c*T -1

and

7"T7"
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(If T is singular, a message to that effect is printed and

we RETURN. )

^

We compute S by the companion form system and print it.

+

We print c, 0, and y.

The matrix

zeroes and ones in the proper places.

+

CPC is called.

+

is put exactly in companion form by p_tting true

The same is done for c = (I, 0, ..., 0).

(If K = max dimension, then we have previously printed a maximum

dimension message so we RETURN.)

+

If IFLAG # 0, go to @ .

+

Print message that realization is good and RETURN®

@

@

IFLAG is the desired dimension of H. If IFLAG - K > 0, go to

0 ÷ IFLAG, 1 ÷ NIX

* ** ** **** ** ** *
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Q This is taken if an error occurred in approximating S bypath

(IFLAG # 0) but when H was increased to the proper dimension the rank

did not increase. This could have occurred because IDERK constrained the

rank or simply because in the context of higher dimensional vectors with

larger norms, the error simply was not significant. Go to 2_ .

Q This path is taken if rank (therefore
the H) is zero. If K

is not yet at the max dimension, go to 2_ .

+

Print NULL MATRIX and then RETURN.

VII. Mathematical Analysis

i. The B. L. Ho Procedure.

Definition: An infinite matrix is said to have rank r

rank of any finite submatrix is r.

Proposition i: Let [c, A, b]

system, with impulse response

H - [hij] , where

th
be an n

c_(t)b.

if the maximum

order c.c and c.o. stationary

Denote _(6) by _. Let

hij - c_((i+J-2)6)b = c#i+J-_ ,

be an infinite order matrix. Then rank H - n.

Proposition 2: Let [c, A, b] be an n th order c.c. and c.o. stationary

system with impulse response c_(t)b - f(t). Represent f(t) in its

taylor's series expansion

t °

k
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Let H - [hij], where

Hij = ai+j_ 2 •

Then rank H - n.

Proof:

Also the matrices

and

W$ " [b, _b, -.- , _n-_]

ak = f(k)(o). Therefore

wA = [b, _, ... , An-%]

are both nonsingular by complete controllability, as are the comparable

observabillty matrices. These remarks reduce the two propositions to one.

We shall prove proposition 2.

The n x m matrix (m _ n)

W = [b, Ab, A2b, ... ]

as does the m x n matrix M,

Let

, A'C' A '2 ' "" ] •M' = [c', , c , "

Then

has rank n,

_iJ denote the elements of MN.

_lj" _i-iAJ-_ " _i+J-_ .

That is MN = H.
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Sylvester's inequality states that

in this case

rank M + rank N - n .< rank MN .< rain(rank M, rank N) ,

n .< rankMN .< n .

Therefore for all m % n, rank H = n.

Remark: Let F(s) = L f(t) = _(s)
q(s) •

-i
Then deg p < deg q. If F(s) is expanded in powers of s ,

F(s)-I
k+l '

k=O s

then the ak are the previously defined taylor coefficients of f(t).

This follows, of course, from the fact that

_t k k!
=-_ °

s

Proposition 3: Let h = [hij] be an (infinite) hankel matrix (i.e.

hij = vi+j_ 2 for some sequence {Vk}) with n the maximum rank of any

submatrix. Then there exists a triple [c, A, b] such that
i

hij " cAi+J-_ . vi+j_ 2 •

n
Lemma: For such an H, the first n rows {Ri} 1 are linearly independent.

Proof of Lemma: Since every (n+l)-rowed submatrix has determinant zero,

the first n+l rows are linearly dependent. Therefore there exists a

number r _ n such that _, R2, .-- , Rr

r-i

R I" I
k=O

are linearly independent and
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From the cyclic character of a _el _trix, we see that

r-i

_+q+l k=O

and therefore every row can be expressed interms of the first r rows.

It follows that r = n. %

Proof of Proposition 3: Let [ao, al, -.- , an_l] be the vector

defined in the proof of the lemma. Then

where c = (i, O, .-- , O)

b' = (Vo, Vl, "'" , vn_ I)

and A is the companion-form matrix with last row

[ao, al, ''' , an_ 1 ] . T

Our conclusion from these three propositions is that a hankel

th
matrix has finite rank n iff its sequence is generated by an n

order dynamical system.

2. Computation.

Let H be a hankel matrix of rank n

th
n order principal submatrix

V oIQ

o

S i o..

Vn_ 1

Vn_ 1 ''" V2n_2

By an extension of the lemma, this has rank n.

and let S be its first
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Computenonsingular matrices L and R such that

LSR = I
n

It follows that S-I - EL

Let

S -

th
denote the second n

v I .-- v n

°°° V 2n-i

order principal submatrix of Hp and let

b' = [v o, v 1, .-. , Vn_ I] .

We kno_ that

S -AS

where A is the matrix defined in proving proposition 3.

Compute

C " b'R ,

b -Lb ,

and A - LS R :_- LASR. Then

cb • "" O) b = v- b'RLb - (1, O,
o

and

c*A*kb * " b'R(LAsR)kLb " b'RL(ASRL) kb " cAkb •
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To provide additional smoothing we compute with

th
The first m

S tl

v
o •"" Vm 1_

ooo

ooo

vm- I V2m- 2

D

order principal submatrix of H, where m is much

larger than n = rank H.

We find matrices L and R of rank n such that

LSR = I
n

and

SR = L' .

Lemma: SRLS - S.

Proof: Since SR - L' and rank L - rank S,

range S, therefore the fact that

L is nonsingular on

L(SRLS - S) - LS - LS - 0 ,

implies that SRLS - S - O.

Let

S

th
be the second m

ooo

v I vm+ 1

vm+ 1 "'" V2m_l j
_

order principal submatrix of H.

^

We can define an m by m matrix A such that S -AS.

In the 3 x 3 case, if
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A i I01 J0 0

a b

then

i 8

0 1 0 0 0 .

0 0 1 0 0 .

a b c 0 0 .

0 a b c 0 .

0 0 a b c .

to the size required•

The important thing is that

A_ is bk+l, the (k+l) st column of

column of H if k _ m).

b is the first column of S and

S (or the first m rows of the (k+l) st

We compute

¢ = b'R ,

b =Lb ,

Then

by the lemma.

by the 1emma.

A = LS R-- L_R .

cb = b'RLb = v
O

c A b = b'RI_RLb = b'RI_

But Ab is the second column of S so

using the 1emma.

btRL_b = Vl, again by

In general

C*A*_* - b'R(LASR)_b = b'RL(ASRL)_o
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By induction we can show that

- bk+1

Since bk+ I e range (S)• it follows by the lemma that

b'RLbk+ 1 - vk .

Remark: Notice that RL

but must satisfy only

SRLS=S.

need not be the generalized inverse of S

o

such that

where

Mechanization.

Starting with H of dimension NST we find matrices TL, TR

TL H TR = I

I is an n-dimensional identity• TL and " T R are saved•

Increasing the dimension of H by one We replace TL
and

TR by their new values if the rank increases•

If the rank is unchanged, either because of the constraint IDERK

or because the rank is the same within the tolerance TOLl, we use the TL

and T R from the previous dimension KMI as follows•

The matrix H of dimension KMI is formed

H -

-s 2 s 3 s4

s3 s4 s5

m

Then the system matrix is

•-. • SKMI]T R •

_* H* •
- TL TR

and the input vector is

the output vector is
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Program CPC
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SUBROUTINE CPC (S, IRANK, B, C, DT)

Purpose: We are given the n x n companion form matrlx _, vectors

G and H, and a time increment 6. We wish to find an n x n companion

form matrix A and vectors B and C (C - [I, 0, 0, ... 0]) such that

cek6_ = H#kG, k = 0,I, ....

Basically we wish to find the logarithm of _.

Operations v Calling Sequence: The matrix _ is entered in the array S

and the output matrix A will be returned in the array S. The dimension

of _ is contained in IRANK. The vectors G and H are in B and C

respectively and the output vectors B and C will be in the arrays B

and C. DT contains 6.

The dimensions in CPC, MULLER and MATINV are fixed at 15

except for the vector of coefficients of the characteristic polynomial which

is fixed at 16.

Language is FORTRAN IV, no tapes are used.

Printout: A fair amount of intermediate output is given because it was

required in the original application.

The roots of the characteristic polynomial are printed.

The number of complex roots is printed.

The real diagonal form T-I_T of _, as computed, is printed.

The continuous system is printed in real diagonal form and finally

the continuous system (C, A, B) is printed in companion form.
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Subroutines: A polynomial root finder, MULLER is called once.

A matrix inversion routine, MATINV is called twice.

Restrictions and Commentary:

i) Naturally ¢ must be nonsingular.

2) ¢ cannot have repeated eigenvalues. In practice this is

not a very serious restriction. Numerical difficulties may occur when

roots are close to each other.

3) Early in the program, eigenvalues _ = x + ly are assumed

to be real and positive if they satisfy

lyl < lo-7
lo-7 + Ixl

Theoretically this is a vulnerable point. If there is a complex pair of

with small imaginary part, trouble can occur. However, this is essen-

tially covered by the restriction that roots must be distinct. Perhaps

more important, a complex palr in F can, for Proper values of the time

increment, give rise to a coincident pair of negative eigenvalues of ¢.

However, we do not expect this to occur because good engineering practice

wlll dictate that the tlme increment used to generate _ will be selected

less than half the natural period.

Besides which the condition is highly improbable under any

circumstances.

4) This program, because of the application which evoked it,

assumes that the palr [H, ¢] is completely observable. This is clear

from the output form of C and A.

Procedure: Since ¢ is given in companion form, the characteristic

polynomial is immediately available. This is factored to obtain the

elgenvalues of ¢. If the elgenvalue I - x + iy satisfies
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I_'l < 10-7

Io-7+ Jxl

the eigenvalue is taken as real and positive, otherwise as complex.

We set up a complex n-vector with the complex roots first and

the real roots last.

The eigenvalues of ¢ are printed.

is printed.

The generalized Vandermonde matrix

transforms ¢ to its real diagonal form, R.

T is inverted to form T-I.

HT and @T are formed.

T-IG and T-I@T are formed.

T-I@T is printed. The computation and subsequent printout of

is done purely as a numerical check since T-I_T will be assumed

after printing.

M = log

matrix

R is constructed and printed.

and its computed value destroyed

Following this, the

m

HT

S - HTM

is formed, and finally the desired matrices

C - HTS -1

A - SMS -I

B - ST-1G

are printed.

i00

The number of complex roots

T is constructed which

to have the correct real diagonal form R



Mathematical analysis:

i) Real diagonal form and generalized Vandermonde:

If a matrix _ has only real eigenvalues, its real diagonal

form A is its diagonal form and the matrix T transforming to A is

the Vandermonde

T-I_T = A.

i-1

Where tij " Aj •

If there is a single complex pair a _ bi then we take

and

r B

a b

T-I

1 0

a 1

b b

0 1

-(a 2 + b2)

m

a b

2a

We call this the real diagonal form for this #. In general,

if there are r complex roots, the real diagonal form for # is the

direct sum of r such 2 x 2 matrices and an (n - r)-dimensional

diagonal matrix. The j th column of the generalized Vandermonde T

. _i-l. The columns, say i
corresponding to a real root Aj is tij j

and 2, corresponding to the pair A1 - a + ib and A2 - a - ib are
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til " Re(X_ -I)

i-iti2 = Im(_ ).

The first such column starts

I, a, a2 - 5 2, a 3 - 3ab 2,

the second such column starts

O, b, 2ab, 3a2b- b3, ...

2) Logarithm of the real diagonal form.

Let R denote the real diagonal form.

The logarithm of the diagonal part of R is very simple

being the diagoqal matrix M whose elements are the logarithms of the

(positive real) diagonal elements of R.

The rest of R is the direct sum of 2 x 2 matrices of the

form

The logarithm of this matrix is

log(a + b 2)

matrices.

ibI
tan --

a

log(a 2 +b

The nOndiagonal part of M is the direct sum of such 2 x 2

As is well known, the logarithm is not uniquely defined. Naturally

we take the smallest value of the imaginary part which will give the correct
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sI

s2

sKN1

The impulse response

compared with Sk,

system computed•

* *k-i
Y of this system is

the system is put in companion form, and the logarithm

If a reasonable approximation between S and S was found,

we RETURN. If a term was too much in error, the dimension of H is

increased to include that term in the next system. This proceeds until

a good fit is obtained or the S vector is exhausted.

Vlll. Appendices

Attached are listings of: a main program used to generate data

and call MICARE; MICARE; DOT; RAKAR; SVCAP; MATINV; MINV; CPC; MULLER;

and the output produced by the data. Notice that the system generating

S need not be stable.
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©

...............

©

w

©

MAINI
EXTERNAL FCRMLLA hU,M_ER - S_UECE ST,_T EMEKT

OIMF. NSION S(-_O)

N = 29 ......

T(3LI = .OCCCI

NST = 18

H3 = .1

IDER K = 3 .........

DO 2 I = I, N
XI = I

T = (XI - I.}_H3

SIll = EXP(2._T) "_ IO.W'(EXP(-2."_T}} .....................
Z CONT INI.,E

CALL MICARE {S,N_TCLI,NST-rH3,1DEPK) .......................

END

021
INTERNAL

© PROGRAM SHCULD END WITH A .STEPt RETI._KER TRANSFE_STATEMEI_T ....................................
RETURN STATEMENT SI_4ULAT_D.

........ SOURCE ERROR __.7_, LEVEL I. _A_NIhG CNLY.

i
,....

¢.i;'_ ............................

IL_., ,.v_

.................................... II ..................

1o4 ........................................................ i



.............. H [CA i 021
EXTERNAL FCRHbLA I_UMHER - SCUFCE ST_TEMEhT - INTERNAL

............. SUBRObTINE MICARE (SSI;8R, h,ICLI,NST,H3,1DEBK)
C THIS SUBRObTINE CC;_PUIES A t'INIP"AL COF!PAhICN FCRM (TRIVIALLY ....................

C IOBSERVABLE) REALIZA/IC_ GEA CYNA/vICAL SYSTEM. INPUT SSUBR IS

.._j..............C ........i FIRST N TERMS OF The- LMPLLSE RESPCNSE EXFA_CEC IN POWERS OF I/S. .....
C IMETHCD OF B.L. PC

............. DIMENSION SSLE_R(SC) t S(2C,201t PT(20,20) _ RCCDE(20)_ TBR(20,20|,
• I IrRL(2C,2C), B(.,G}, C(20|, SC/_P(50)

C NWR IS SYSTE_ NUMBEK FC_ WRIIEUhIT

NWR : 3
[DIM = 23

' NIX= ...... C
IFLAG : C

RK = 0 ....................................................................
WRITE (NWR, 4)

4 FORMAT(IHI ) ........
WRITE (NWR,_02I ICLI

30 2-F(] RM AT (II, 5X; 12 FTCL ERA NC E"":--,EI5.-8- )

......................... WRITE (NWR, 5)
5 FORMAT(//IOX, 12HIhPLT VEC]C_ ......I) .................................

WRITE (NWR, 6| (SSL_R {I), I = I, h)

r'_ 6 FCRMAT (6E20.E I

C
C'------CH AN-GE N-_O-M _XI MI_M-D IMEI_SI I_t_"

N = NI2
M 3:-2 _'N _ -

C
,"" .........C ....... BEG IN MA IN LOOP ...............

DO 26 I = NST , N

"C GO--TO--GO--IF CERTAI &'--VAEI.'E._'-EF-I -SHCULD BE- £ELETEC

_" IF IIFLAG) 8,9,6C

-8 ..... K-= I ..............................................................................................................
C
C SET UP -TI'E FIRST-NATRIX FRCF-THE-SSIJBR-VECTCR

DO 10 L = 1,1

-DO- I O M -=--ITI

L5 = L_M

[O--S(L, M)---SSLBR (LS-l-) ........................................................................................................
C

..... C ...........GOTC RAKAR FOR-RA_K_-- ORIHC_CI_IVALIZED-St-AI_D ....CFTHONO_MALIZING .....

C i MATRIX RT.

TOL2 -=-TOLI

RANK = IDERK

CALL RAKAR (S,RT,RCC_E-,RAI_I(,IDI_-,K_KtTCL2)

C

C IF RANK IS-INCREA-_I&G. CCNIII_UE .................................
IF (RANK-RK) IE,18,25

"- C IF S IS A NULL MAIRI_ OEIEFMIkE IF SSUEI_ VECTCR IS EXHAUSTED

18 IF (NIX) 20 , 2C , L9

_ Ig .... WR I IEINWR,'/) ............................
GO TC 2 5

I_'FI3R MAT{ 36H--NI X-E_I_AL-S-E NE- AI_D--RANK-E _U_LS-RK._)

_ 20 IF (RK) _.0, 3C_ 35
.......... lr ...........



MICAI
EXTERNAL FCR_LLA NUMBER SCUPCE STATEMENT

|

021
- INTERNAL

.... C....................IF SSUBR ISA NLLL VECICRPRI_T MESSAGE_AC RETUFN

r_ 33 IF (N-IT 31, 31, 20
L J _ ....................

31 WRITE (NWR, 32) ...............

32 FORMAT (/IIICX, 12hNLLL MATRIX )

0 P ETLRN .......
• C

'--C ............IF RANKIS STABLE WECCNSTRLCT # HEALIZATIC_aND START 8Y

.........C I CONSTRUCIING THE S_-CL_D MATRIX FRCM TEE SSUER VECTER
, 35 K_I = K - I

WRITE (NWR,303| KMI

0 303 FORMAT .( // , 5X , 5HKI'I: ,15 , // )
DO 4C L = I, KMI

DO 40 M----I,-KM1

............. L5 = L_M
40 S(L,MI = SSUER(LS) ...................

IRANK = RK + .!

© ........c.........................
C PUT 1HE SYSIEM _AIRIX IN .<, I_PLT CCEFFICIE_IS I_ _, OUTPUT

.... C....... I .... COEFFICIENTS IN--C,

_; ............. DO 42 L = I, IRA_K
B(L) = O, .....................................................................................................

DO 42 M = I, KMI

RT(L,M) = O, ................
00 43 MI = 1, KMI

43 .......RT (L,M} "=_ RT( l, MJ-$"'TRL--( L,MI|m-S(MI, MI

................ 42 B(L) : B(L) + IRL(L,M) _ SSLBR(M)
DO 41 L : i, IRA_K .....................................................................................
C(LI = 0

p'x DO 41 M _- It IRA_K .................................................................................................

S(L,M) = 0

D'O-% _- _ I--=--I3-'KMI.......................................;........................
44 S(L,_) = S(L,M) ÷ KI (L,MI) :_ TRR(MI,M|

41 C(L) =-C[L) +--SSLBR( M] • TRR[_,L)
C

-7 ........ C-- COMFUIE TI-E S-ESTIMATE VECTCR ........................................................
CALL S_CAP( S ,_ ,C ,_, IRANK,I Ol F,SCAP )

81 .......WRITE [NWR,E41 .................................

84 FORMAT (// IOX, 16_'ESIIMAIED _ECTGR /)

WRITE (NWB, (l (SCAP(L|_ L = i, M3] ........................................................................

IF (N-K) c.(,!6,c. 7
-: 97 EPSIL = C, ..........

M8 = 2_K - I

00" 47 ..... L= I, M8
STLBA = 2,'_ABSI.(SL_A(L) - SC_P (k) i

47 EPS IL=AMAXI(EPS IL ,_ILDAI( I,+_BS (SSUBR(L)) I).............
C

C

C

r'_.

48

51...........IF{IFLAGI _.2,.c2i_

52 IFLAG = (L+2112

EPSIL IS iHE MAXIMUM RELAIIVE EFECR CFTHE--TFECRETICALLY-ZERO ...................
L ERRORS.

..... EPSIL =_AMAXI(EFSIL,I,E-7)

M8 = M8 +I

DO 50 L = M_ ,M3

STLDA = ABS ( S._LBR (L) -SC_P (LI)

ERRCR = STLC_I(I, + ABS (._SGBR{L)II ......................................................
IF(ERRCR-EPSIL) 5C,5C,_I
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ICA1 02/
i-_ ..................... EXTERNALFCR/_ULAtwU,_ER -- SOURCEST_TE_/EhT - ......INTERNAL

C . .....

C A PRINT OF IFLAG INI;ICAIE$ A_ ERRCR lh I,_TCI-II_T TP.E
...... C ........ ( 2* IFLAC- - i ) (JR ( 2 _ IFL_,G - 2 } ....CCMPCNENT OF THE-INPUT ........

C V ECTOR.

.....................WRI TE(N_R,45) IFLAG
• GO TO 5?2

45 ......FO_AT{7FOIFLAG=I2 } ...........................

50 CCNTINUE

C FORM TRAN_FORP/AIILN MAIRLX

r_ ...............372 "--IF(IRANK-1) 38,3E,c6 ..............................................................

96 DO =.3 MI = 1, IRAhK

53 ......RT{ I,MI) -: C(MII ......

_"_ 49 O0 54 L = 2, IRA_K

DO 54 M = I, IRA_K

RT(L,M) = C,,

,'_ DO 54 M1 = I, IRANK .............................................................................

54 RT(L,M) = RT(L,M) + RT|L - 1_M1}x_ S(MI,V)

C TFTI S-HAS FDRMED-TFE--IK, A TRIX--IRANSFORMINGTC-CCMPAI_'ICN-FORM.
DO 71 L = I, IRA_K

RCODE (L) = C, ............
DO 71 M=t,IRANK

.............. TRL (L,MI = O. " -
DO 7C MI = I, IRAKK

/O--'--TR L( I:,M }---=-"TRL |I_-;MT-÷-R T (LtMI }• S (M1 tM }

71 RCODE (L) = RCCDE {L) + _IIL,M)_BIM)

.... C ..............................

C OffTAIN TI-E INVERSE CF 1HE I_AI_SFGRMING MATRIX

" RANK= IRANK .............

TOL2 = TOLl

_LL--ITAKA R-I-'Rl-TtS,---B_-"RAKK--_-i D IM, IRANK, IF_BK-,TCL2 l

IRK = RANK + ,[
IF-( IRAKK-TRK l " _2,-6Z,63 ............. _-.............................

f"_

"-h
C
C

C
C

THETRANSFORM_TICN-MATRIX-IS SINGULA.-PRII_T MESSAGE AND-RETURN .......

63 WRITE (NWR, 64)
6 _"l=O RM A'T{11710 X;--3.2HTRAN-_F _R I_AIICI_--MATR I-X--SII_C-ULt R l

RETURN

THE TRANSFORMATICI_ MATRIX IS I_CW FCUND

- 62 .........C0-67L _= I, IRANK

O0 (7 M = I, IRAt_K

TRR--{ L, M }--:-0.

DO 67 MI = I_ IRA_K

.................. ()7 ....... TRRIL_M)--=--TRRIL_M} +_(L.FII_'RT-(M_F£)
C
C

77

76

F IN ALL-'Y P t:T--A,B ,C-1 N -CC P'FA_I CI_--FCRM

DO ?_ L = I, IRAI_K

B [ L-)-_--_,
DO _t M = t, IRANK

S ( L ,M )-=;- O. .......................................................................................
O0 77 MI = 1, IRA_K

S(L,M) - SIL,M,) +-II_LIL,MI)'C-TRR(F1,P) ....................................................

EIL) = B(L) ÷ CIM)'_TRRIP,L)

0 ZI-7 B--L--"-- I.-- I R _ KK
C(L) = B(L|
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MICAI 02/I
EXTERNAL FCRP,LLA NU_BER - SCUPCESTATEMENT - "" INTERNAL F

:©
4

_ ..........

©

36

7B ..............E(LI -= RCCDE{L) .........

0 .............C ..............CCMPUTE SIGNAL ESII_,ATE FRL_ CCMPAt_IC_ FCRM.
CALL SVCAP (S,_C, _, IRANK, ICIM, SCAP) .....................................

82 WRITE (NkR, E6)
85 FORMAT (//IOX,37PVECTC_ F_EI" C£_FA_ICN FCR_ OPERATICN /) ......

WRITE (NWR96} (SCAP(L}t L = I,_3}

38 .........WRITE (N_,R, 39l ..........

39 FORM_T(IIIOX, 2CF,OLIPLT CCEI-FICIE_TS I}

WRITE (NWR,EI(CiL) v L = I, IRA_K) .....

WRITE (NWR, 37)

37 FORMAT (//iC_, 14HS_SIEM _AIRIX - /)

DO 36 L = I, IRA_K

WRITE" {3, I01) "

FORM AT ( II )

WRITE (NWRv6)(S(L,LL), LL = Iv IRANK)

0

............

C'
C

... C

..... WR ITE (NWR,34) .......

3/, FORMAT(//IOX, I_MINPbT CCEFFICIE_TS /|
WRITE _(NWR,E){B(LI_-L-_-I_-IRA_K)

IRNKMI = IRANK- I

IF (IRNKMI) 334,_-C4,305 .................................

305 00 _8 IXI = I, IRN_MI

C(IX] -* I) : 0

.....DO 'g _I:X2 -=- I--"_--IRAN K.................

S(IXl,l)2) = C.

IF ( ( IX)+I) .E_. IX2 ) 5(I)I,IX2) = i.

r'--,, C

gB CONTINbE

304'-CO N T IN UE

,Z-_" C

..................CALL CPC ( S-, IRANK ,--B-,--C--,-I-(3}

IF (K-N) _1,3CCvSb

• - ................ ql IF(IFLAG) 3CC,3CC,2o

60 IF( IFLAG-I ) 11t11,2_

II...... IF LAG"-= -C

:_ NIX= I
................................GO TC 8

25 L = I

..................... RK = RANK
NI)_ = 0

D 0 '_.5- _ -=-I-,--K-

IF(RCODE(_)} c 5t (-5,27

.................... 27 DO 28 MI = I,I
TRL(L,MI) = SIt_I,M)

............. 28 - " TRRIMIvL} = RTiNIvM} .............................................................
L = L + 1

"95 .............CONTINUE

...... IF ( I-N )26,g0,_C

90 WRITE(NWR, ICC)
100 FORMAT(IIIO_vbOPRA_ NO STAEILIZED BUT WE H_VE BE_CHEC MAXIMUM Ol

IMENS ICN ) ................
K = K + 1
GO" TO-'35

_" 26 CI3_TINUE
• . ........................... ................ | ........................
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55 .............. RETURN ........................................................................
300 WRITE(NWR,301)

301-FORM,_T( 115F TFIS _tALIZA]ICtw IS SUCCESSFUL, _LL COEFFICIENTS

1 HAVE BEEN MA'{CHE_ BEFCR_- HEACHING THE MAX CI_ENSICN

R ETI,RN

END

)
,.j

109



©
DOTI

EXTERNAL FCRt_uLA NUMBEM ......... SCUPCEST_TEMENT

FUNCTION DCI( ICIM,t_C,A,I,J|
DIMENSION 4( IDIM,IDIM}

DOT = C

(T_) .... DO 1 • K=I,NC ....
1 DOT = CO1 ÷ A(K,L|_'A(F,JI

OZ/
--.....INTERNAL

RE TUrN

Q .................... E ND......................................................................................................................

©

.o_

/ ....

,"_L

ii0 ........



C_
RAKI O_

EXTERNAL FCRf_LLA NUMBER - SCURCE STATEMENT - ""INTERNAL

i_ I00

_'_ II

I0

C

"C

SUBRULTINE RAKAR ( S , RT , _COEE , RAI_K , ICII',hC,NR,TCLI|
DIMENSION XlP(2C)

OIME_SIUN S(I.911v,IL)IM}, ,ITtlCI_,IDI_), _CCCE{IEIM)
SET UP IDENTIT_ W,ATRIX

DO IC I =I,NC

D9 Ii .....J = I ,NC .............................................................................................................

RT(I,J) = 0

RCOOE(I} = C

RT( I, I} = I,

IF)ENTIIY MATRIX HA._ i_:N SET LP. ........

_r_.. ....... :-- C ................ FIRST NCNZERO

FIND-FIRS] NCNZERC CCEL'MN'CF-INPUT ..........

00 20 L = I, NC

K = L ..................

XMAG= DOT(ICI_,NR,S,L,L|

!_ ..................... IF (XMAG) 20,2C,21 .................................................................
20 RCOCE(L! = C

C NULl MAIRIX"EXIT------

,_ C

............... R ETURN ..................................................
21 XMAG = I./SORT(_(MAG}

CCLLMN Ai_O llS hC'RI_ALIZII_GFACTC_HAVE ...................................

C B EEN FOUND
C

C NORMALIZE THE _ECIOR

......DO 15 I -= I,_C

15 RT(I,K) = RT(I,KI_XMAG

DO 1_ I=I,NR ...................................... .--........................................................................
16 S(I,K! = S( I,K;_XMAG

RCO CE {K }-_=--I;........."..........................i........................................................

RK : I.

C -VECTOR--HAS BEENNCRIVALIZED_AND-THE--II_CEPE&{3E_CE ..............................
C INDICATOR HAS B_EN SEI

C PREPARE lO START IVAIN LCCP

XA= K _ I

C START MAIN LOCP CFGRAM-SCi4MICT PRCCESS ..................................................................
DO 50 J=KA,t_C

-" -..... C .................FINC PREORTOGCNALIZED LENGIH CF_ NEXT (JTP} VECTCR ....................................

XMAG=DOT (IDIM,NR,S,J,J}

JP I -=-J"- -1......................................................

" C L CONTROLS TFE CGLBLE GRIHCGO_LIZATIOk

DO _0 L : 1,2 ......................
C K RLNS OVER THE PA_-VICL-_L_ _]_TERMINED BASIS VECTCRS

'...... DO 30 K = 1,JMI

C XIP{K) IS TF.E I_NER PRCDLCT fF THE PRESENT {JTF) VECTGR

--C---- ..... W ITH-THE"KTH -OR THUNCgMA l IZED-_EC TOR

", 30 XlP (K )=00 T( ICIM ,NR ,S,J ,K }

' C ORTHOGONALIZE THE--jTH VECTOR ....................................................................................

DQ 40 K = l,JMl

-" -.........................DO 45 " I = I,NC ....................

(,5 RT( l,J} = RT| I,J} - AIP(_)_RIII,K)_CCDE{I<}

DO--z_-0-I,=I]NR
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-40....CONT INUE ........................

..........C FIND LENGTt- OF JIf- VcCTCR AFTER ORTHCGC_LIZATIC_
C ............

XTP( I)=DOT (IOIM,NR,_,._,J_

........C OETE_MINE IF LEI'.Gltl IS SIGNIFICANT
IF (XlP(1)IXMAG-TCLI) 42,e2,6C

...... C.........IT IS SIGNIFICAhT AI6G. If IS KOT AT 42 .................................

r-', 42 DO 4! I=I,NR

43 S(I,J )-'-0

GO TO .:C

60 RCOCE(J )

RK = RK +

..........................XMAG =

C NORMAL

DO 70
70 RT (I ,J )

.............. 00 51 I=i

51 S(I,J)

- IF'( RK-RA

52 TOLl = I..

59 CCNTIN

C COMPLTE

"= le ......

I,
].IS'3RT{XIP{ I }) ....................................

IZE TPE C_ThOGCIxALIZED VECTCR

I = I,NC

= R'((I, J} _'XM.AG

,NR ..........................

= S( I,J )_XMAG

kK }- 50,52,52

,E ...........................................................

R_NK

RANK = C

DC 75 L= I,NC

75--RANK:--_ANK--_-RCUD'E{E}
RETURN

END ....................................................................................................................
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SVCAI
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O21
..... INTERNAL

SUBRCLIINE S_,CAP (A,B,C,_IRAf_K, IDIM, SC.aF)
--DIMENSION SC_P(5CI, VEC(50)_ VI(50) .....................

DIMEkSION A(IDI_',IDIM,}, 8(IUIM), C(IDIM)

O0 5 L = I_ IRAhK
5 VI(L) = B(L)

V
SC

.......... DO
4b

45

VEC (_

DO 45

VI(M

RET

END

M3 --2-:(: N

DO 45 L = It M3

SCAP (L) : C

CO 4b M = I, IRA&I<

EC (M) : 0

aP (L) = SCAP (L| + C(Iv)

46-MI = I, IRA_K

) = _EC(M) + A(M,,MI) _'

M = !, IRANK "

I = _EC(M)

_I(M)

Vl(IVl |

_N ....................................................................................................................

f,_-,

k......

\.

.................................................................. I .......................
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©

r',, C

..................... DIMENSION A(15,15) , AINt(15,15}
DIMEI_SIO'N C(1251 , i_A1(15) , I_A2(15)

O ..... C

C

©

SUBRCUTINE M_TII_V ( A , AII_V , CETA , I_ )

K= 1

00- i-J "---I--, N.......................................

DO I I = 1 , I_

C(K) = A( l,Jl

K = K + I

....... C .......... • ....

c'_ I CONTINLE
',..,J ..................

C
CALL MINV ( C , I_ , BETA , _AI , WA2 )

K= I

D-O--2 --J-'=7--T -_
C

C

©

" DO 2 I = IV--N

AINV(I,-J) =-C(K)

K= K • I

C

_ 2 CONTINLE
RETURN ..................................
END

_-_,

,._.

.................................................................................. 114 .......................................................................................



M INY i 02/
EXTERNAL FORmuLA kUM6ER .....-.....SOURCE STaTEmEnT -" .....INTERNAL I

©

©

©

©

©

©

C

.......... C ...............

C

SLBROUTINE MIN_ MIt
............................. MIP

C

C
..... C .............PLRPUSE ..........................

C INVERT A MATRIX

USAGE

CALL MINV(A,N,D,L,M}

C

C

C

C

C

C

C

C

C

C

--'C

C

DESCRIPTICN OF PARAIvETE_S .......................................
A- INPUT MATRIX, DkSTRCYED IN COMPUTATION AND

RESULTANT IN _ER._E, .........

N- ORDER CF MATRIX A

D- RESULTANI DETERMINANT ....................

L- WORK _ECTCR CF L_-NGTH N

M---+WDR K--I;EC TCR "CF--I_ENGTH- I_"

REPLACEC EY

C

C

'C

C

C

C

C

C

C

....... C

C

C

MIP

MIP

MIP

Mlt

MIP

Mlr

MIP

MIP

MIP

HIP

MIP

HIP

MI,_

MID

MI_

MIh

C

C

C

C

C ............... 6EM_RKS .........................................................................................................
C MATRI_ A PLSI BE A GENERAL MATRIX
C ........................................................ MI_

C SLBROUTINES AND FLNCTIC_ ._GBPRCGRAMS REC_IREC MI_

C NONE MI_

C MI_

"METFOD ......................................................... MI_
TF.E STAND_RC GAGSS-J_RCAN METHOD IS LSED, ThE DETERMINANT MI_

IS ALSO CALCLLATED, A CETERMINANTCF-ZERC I_CICATES THAT ..........MI._

THE MATRI_ IS SINGLL_R, MIN
........................................ MI_

C ........................................... MIN
SUBROUTINE MINV(_,NmCtLtM} MI_

.......... DIMENSION A{II,L(II_MIi} .................................................................................. MIN
C MIN

--+ C ........+. +,-._.% i. ;% _.. •. i. • • • +. • i._..-, ., i.--,. + ii i,_,+.i;. +, -, • -ii. _. ,-, •..+ .-...-•+,. ,-,, MI N
MIN

........ IF A DOUBLE PRECISION _ERSIE_- CF THIS RCLTI_E IS CESIRED, TFE MIN

C IN COLUMN I SHOULD 8_ R_OVED FROM THE COUBLE PRECISION MIN

.................. STATEMENT WHICH FCLLOk(• ....................................................................... MIN
MIN

DOUBL EPR EC ISION-+A iC iB IGA,HCLD MI.N
MIN

............TFE C MLST ALSO BE REWC_EG FBCM DOUBLE FRECISICB STATEMENTS elm

C

C

C

C

C

.... C

C
--" C-----------S EA R CH-FG R '+LAR GEST ELE ME,_1

C

APPEARING IN OTHER RUCTIN_S USED IN CCNJU_CTIC_ WITH THIS MIN

RCGIINE, ............................................ MIN
MIN

TFE DOUBLE PRECISION VErSiON CF+THIS+SL'ERCUTI_'EMUST ALSO ........MI,'W

CONTAIN DOUBLE PRECISION F(_RTRAN FUNCTIONS, _ES IN STATEMENT MIN

IC MUST _E CFa_GED IO CASSo ............... MIN
MIN

..................................................... ,_IN
• I Ill III III I •l III II Till l••ll lllllllll Ill Ill II II II 11111111111111

................................................................. 115



M INV i
EXTI-RNAL FCRMI, LA hUV_EI_ ........SCURCE 'STATEMENT ......-

021
.....INTERNAL...........

............................ D=I.C

0 .................... NK=-N
&'] _C K=L,N
NK= '_K÷N

0 L(K)=K

I M(K)=K
KK=NK+K "

(.0 ................. BIGA=AIKK)
00 20 J=K ,N

IZ=N#( J-I I

MI
MI

MI

MI

MI

MI

MI

.... DO 20, I=K,N ......................
I J=! Z÷l

lo--IF{ _Bs(BrGA'r---_BS(-A{IJ]J-]-15-3ZCi2 0

0 ............. I5. BIGA=A(IJ)
.............................................................................

L(K)-I

M(K)=J

O 20 CONTINUE
C

--C INTERCFAKGE-RCT_'S

"_ C

....................25

J=L(K)

IF(J-KI 35,95,2_

K I=K-N

DO 3C I=I,N

KI=KI+N
HOLD=-A( K I )

J I=K I-K+J

A(KI )=A(JI)

AIJI ) =FOLD ...................

TNTERCHAR(_: CI]L'I_'MNS

-30-
C

C

MI

MI

MI

MI
MI

MI

MI

.................................... IMI

,MI

....................................................................... MI

MI

I'I

MI

MI

...................................... MI

MI

lWl

35--I= U (K} ....MI

IF(I-K ) 45,45,38 MI

38-JP=N_,{I-I) -- MI

DO 40 J=I,N ,MIi
JK-NK+J _I
JI=JP+J MI

HOLD=-A(JK) " MI_

A(JK I=A(J I} _11

............ 40A{JI) =HOLD ........................................................................................................MII

C MII

--C

C

C _..

45 IF(BIGA) 48,4e,48

46-D=O.G

RETURN

4B--DO-5 5--I-I.N

IF( I-K ) 50, E5,5C

............. 50- IK=',JK+I
A( IK )=A{ IK)I(-BIGA}

.......... 55--CONTIN UE
C
I; 'RE'BL-CE--MA"Tl_ I-X
6

C IV IO E--CO L-UMIk--B_F-M INI;'S'-'PIVG T-'IVA I:t;E--CF-'I:IVOT-EL EM ENI'-IS -_M I_

CCNTAINEC IN BIGA} MI,
.................... MI;

MIt

.......MII

MI_

MI_

- MI_

Mlt

'elf
MI!

.......................................................... | .......

.......................................... i16 .........................................................................



MINVI

..... EXTERNAL

0211
FCRPULA NUMBER "- - SCUFCE STATEMEt_T - INTERNAL F

.......................O0 65 I:I,N

............ IK=NK÷ I
IJ= I-N
DO 65

IJ=) J+

! IF( I-K
60 IF(J-K

...................................................................MIN

MIN

...................................................................................MIN

J=l ,N MIN

N MIN

) 6C,6c,6C MIN

) 62'_,62 ..............................................................................................................MIN

O ..... 52 KJ= IJ- I÷K
A( IJ I=AIIKIW'A(KJ)÷A(IJ}

65 CONTINLE

© c
C DIVIDE ROW BY PIVGT

C

MIN

MIN

MIN

MIN

MIN

MIN

C) ................ KJ=K-N ............................
DO 75 J=I,N
KJ=K J+lk

,,"7 .............. IF(J-K) 7C,'15,7[ ......................................
70 A(KJ )=A(KJ}IBIGA

.............-75-CON T INUE

_ .........C
C

C

C

C

© ..........c.....

8O

C
._

c
C

MIN

MIN

MIN

............ MIN

MIN

MIN

PROCUCT-OF PI_OTS .........................................................

D=O*B IC-A ................................................................................

R EP LAC E-P TVOT-B-Y-'REL-IPI_ CC AL

A{KK )= 1.91BIGA

CONT INLE

M IN
........................ MIN

MIN

MIN

MIN

MIN

MIN

..............................................MIN

MIN'

................................................................................................ MIN'

FINAL ROW ANC CGLLMN ItwTEI.ICHA_GE MIN
MIN

" K=_ M IN

................. I00 K=(K-1 ) ....... MIN'
IF{K) 150,15Ct i(5 MIN'

...... - ........... 105 I=L(K) ....................................................................................... tWIN'
" IF( I-K ) 120,120,1(E tWIN'

I08_JO=N._ (K'I ) MIN'

JR=N_.( I-I ) MIN'

.......DO II0 J=I,N ...................................................................................................MIN'

JK=JQ+J MIN'

- - ................... HOLD=Z{JK ) ...................................................................................................... MIN'
JI=JR+J WIN'

.....A( JK )=-A(JI ) MIN'

II0 A(J I ) =HOLD MIN"

.................. 120 J=M(K) ..................................................................................... MIN'
IF(J-K) 10Ct 100,125 MIN'

- -- 125 KI=K-N .....................................................................................................MIN'

DD 130 I=I,N MIN'

KI=KI+t_ MIN'

HOLD=A(KI )

J [=K I-K+J

A(KI )=-A(J) )

i30 A(JI ) =HOLD --

GO TO lO0
150RETURN

END

MIN'

.....................................................................................................MIN'

MIN'

...................................... MIN_

MIN_

.................................... MIN _
M IN _I

............ I17 .......................................................................................



CPCI
EXTERNAL FCR_ULA _U_,_ER - SCURCE STATEMENT

02/
-" ......INTERNAL

© SUBRCLIINE CPC ( S , IHAhK , B , C , OT )

OIMENSION S(23,2C)--,-B(15) , C(15)_, CCI]F(16) ,RZETR(15I,ROOTI(15)--

DIMENSION RR(15) , RI(i5) , I(15,15) , TINV(15 ,15) ,XM( [5,15|
NWR = 3

DO I I = i , [RANK

©

©

CCOF(II :-S(IRAN_,I)

...... C ............................

1 CONT INLE

...... C ......................

C

CCOF(IRANK4I) = I.

Q CALL MLLLER ( CCOF , I_A&K , RCETR , ROOTI )
..... C ............................................................................

NNZR(] = 0

r-, ...................... J=O
i ,- j,

C

OU 2 l"--_--I--'7--IRAKK

,_ C
X : (A_S(ROOTI(I}))/(I,E-7--4-ABS(RCOTRII|)-) _

IF ( X °LE. I.E-7 ) GU TO 3

_'.--'_...................................IF (-ROOTI(I} .EG. 0.-) GC-TC-3 .................................................................................
C

N NZ RO----K KZR C--_--I_

,,'---, RR(NNZRO) : RCCTR(II

R I-(NNZRO )---RCOTI ( I)

GO TO 2

3 CONTINUE

RR(K) = ROOTR(I)

RI {K }-- O;
J = J + I

2- CONT INL-E .......................
C

IR-_=_"NNZRC '/--2

WRITE(NWR,1O0) (I,_CCTR(IJ , RCCTI(1) , I = I , IRANK )

iO0_FORM _T-(-//I--,--?X-" _33HRCCT ......RE _L-"PART ............CMFLX PART --,-/--,........
I ( 5X , I_ , 3X , E15.5 , 3X , E15.8 ) l

.................WRITE- (3, i01) I_NZRO ...............................

lOl FORMAT (2X,2]H _LM_ER F_F CCI'PLEX RCCTS = , 15 , // )

C

....' ......... C ...........

C

IF ( IR .EQ. C ) GC IO 7

DO 5 J = i , IR

....IX I - 2,_J------I

IX2 = 2'_J

I {ITIXII--=--1 •

T(l,IX2) = O.

5 CONT INUE

....... C ......................................................................................................................................

DO 4 I = 2 , IRAkK

DO 6 J = l , IR

118



CPCI
EXTERNAL FCRPLLA NUM_E_ ...... -........ SCUFCE STATEMENT

©
C

Ji = 2*J - I

J2 = 2*J .....

T(I,JI} = RR(JI}_ T(l-i,JIl - ABS(RIIJI) ) _ TiI-I,J2}

T(l,J2) = RRIJI}_ T[I-I,J2] ÷ ABS[ RllJI) ] • T(I-I,JII

................. 6 ..........CONTINUE ...........................................................................

4 CONT INLE
C

0 ? CONT INLE ............................
• IF ( NNZRO .GE. IRA_K I GC TC 24

........ MI = 2 m IR * i
C ...................

DO 8 I = MI , IRA_K

0 c .....................................
DO 9 J = I , IRAI_K

C

0211
INTERNAL F

©

C

C

C

T(J,l) = RR(I }_(J-_}

9 CONTINUE

8 CONT INLE

tr_ 24 CONTINLE
"-t ......... C ......... CALL MATRIX INVERSIC_

C

.'-" - -CALL MATINV ( T-,TINV--i-D=TT-IRA_,K-I}
_, .:'

DO 10 I = i , IRAhK
--C

•i" ROOTR{ I } = C.
00 -iC-J =--!-,- IRANK

XM(I,J) = O.
.r .... -- ............................. ROCTR (I)-= _OCTRII}--÷-C-I-Ji--_--TIJiI}

C

I_O--70--K-----_-- II_-AN_,
:" C

XM( I, J I-=- XM( I.J|--÷---_[I-_KI-'_-T (K ;J)

C

I0 CONTINLE .......
DO I1 I=]. , IRAhK

C

C

ROOTI( II = C.

DO II J : I , IRAt_K

S( I,JI C
RDC)TI(1) = ROOTI( I} +TIN_-|I,JI-_BIJIT ............................................................................

C
C 0 II-"K-- -I-")---IR ANK

S(I,J) = S( I,,_}'÷ .... ][INV (I ,K) -w_--XF( K.j ! ......................................................
II CONTINLE

....................... WRITE (NWR, IC4 | ....................................................
WRITE (NWR, IC2} (RCGIR( I _ FI=I tII_ANK)

"WRITE-{3,103I

WRITE (3,112)

............................................................................. i19 .......................................................................................................



CPC 1 02l
,t_,; ..................... EXTERNAL FCRV6LA hUM,_E_ ......... SCURCE-ST_TEMEhT " " :INTERNAL

© ....... l_!z

12

r-_ 5(I,l) = _LOG ( Ai_S (RR(I) | ) I DT

C

13 CONT INLE

O- ...........c .........
IF ( IR .EQ. C ) GC ZC 17

,r-,_ 25 CLINTINLE

DO 15 I : I---,--IR.......................................................................................................

C

J2= 2 w, I
--'C

DO I_ J = I , IRAhK

S(JI,JI = C.
....... : ..................... SlJ2,J)=-C_, ..............................................................................................

C
l'&'_Cl] N T) NU E

C

S (J l-;JI )--- (- A LCG _--(---._QRT- ( -R R( JII--_'_2--._--RI{J I ):t:I2 I-! I! I;T.........
S(J2,J2) = S(JI,JI)

S(JI,J_) = ATAN2{AB_IRI{J2)},RRIJ2)}/DT ........................................................

15 S(J2_JII = - S(JL,J2I

I7-WR IT E{= _-104}

_RITE (NWR,IO2) (ROCTR(K) ,I(:I,IRANK)

104 FORMAT ( // _,--21H " CI;TP(JT--CCEFFICIENTS--) ...............................................

WRITE (3, ICa)

I06-_FORMAT(/,_X,_CHCENTINIJOLS-._YSTEM-II_; I;EAL-_I_GCtwAL-FORM }-

DO I_ I = 1 , IRANK

E

.... WRITE(NWR,IC2) ( S(ItJ)_J=I_IFAhK)
" .... C ...............................

18 CONT IN6E

- WRITE I3, 103) .....................

WRITE (3,10=.)

L'US-FD R MATF_UH--I NP IJT-UCE FF IC IE I%]._--|

WRITE (NWR, I02) (RCOTI(K) ,K=L,IRANK)
"i ....................

....................................................................120



CPCI
EXTERNAL-FCRHLLA--NUM6ER ......-'----SOURCE-STaTEMENT

02/
-".....INTERNAL

............ DO I_ I = I , IRANK
C

TINV(I,I) =

19 CONTINLE
1 C

DO-2C I=" 2,

...... C

C

C
©

DO 2C J = I

" - TINV( I,J}

RCGTR(1)

IRAKK ............................................................................................................

• IRAhK

C ............. ......

..........................................CO '20 _K_-- 1"; "fRAnK .............................................................................................

C

C

0
C

C

..... C

C

--20

©

TIN_II,J)=TIhV(I,JI ÷ TI_V(I-I ,_) _' S(_,J)

CONT INLE ......................................

CA El- RATRIX-" IN%'ER S [CN"

CALL M_TINV

DO 21 I= I ,

....... C(I) = G,

DO 21J =

( TINV,-I,DEI-_,-IRANK ").............................................................................
IRANK

I , IRA_K

-...=.-

C

C

_M(I,J) = O,

C(1) = C(1) + RCOIR(J}--_-I(-J_I}

......00 21 K = I ,-fRAnK ............

,_M {-I",-JI--=-'X_FT_T-÷--_ {T_ K) _ *'-T (IK_J I

= I -,-IAAt_K

'C@

B(l) * II_V(l,JJ

C

......... -2 i-_ONT INCE

C

.................DO-2 _-I -----I--,--IPAKK

C

BTr) "=- 0.

C

DO 22 J
C
.................... .(( I ,J)

B(I) --

C

ROCTI(J)

': DO 22 K= 1 , /NAhK

S(I,JD = $(l,J| ÷ II&_(I,K)
C ...................................

Z2 CONT INLE

C

* XM(k,J)

C

WRITE (3, 1041

--WRITE {NWR,IC2I .....{C(I)"I=I,I_ANKI

WRITE (3, IC])

i07 FORNAT (/,5X,37H CC_TIh-UCL-. ( _YSTE_'-IN-COMP,_IC_-FC_M-!

DO 23 I = I , IRAhK

WRITE INWR, IC2| (._(I,_) ,Q=I,IRA_K)

.................................................................. 121



CPCI 02/1
EXTERNAL-FCRNCCA-D, UMSER .......-.......SCUF_CE-STATEMEI_T .......".......INTERNAL F;

C

23 CONT INLE

-wRITE (3, IC_) ................................

_RITE (3,1CE)

WRITE (NWR, IC2) (B {I |,I=I,IRANK) ........................................................................................................

RETURN

r", END

122



ML;LL1
,r_... EXTERNAL FCR_LLA RUa_BCR

,©

02/
"'- ....SC)URCE STATEMENT .....- ......INTERNAL

2", SUBROUTINE MLLL ER (CCE, BI ,_ [.EIR, _COTII
---......C--MULL ER ......................

F)TMEt_SION COE(I_),_UCT_(15),_CCII(15)
............... C .............. , ..............

C COEFS IN £ROER CF I_CREASING POWERS OF Z

NUP = ( N1 + ] ) I 2

DO 2C I = I , NLP ................................................................................................................
J = NI + 2- I

0 CSV = COE(I) .................................................
COE(I) = COE(JI

20--C0 E (J }-'_--CSV
r_ NZ=N l+ l I'F
,,.,,,.'

N4= 0 ................ I-F
[=N 1 +1 I-F

J'7 .................... 19 IF(COE(I) }9,"7,S ...................................................................................................PF
7 N4=N'+I

ROOTR (N4"T=C.

,'_ ROOT I(N4 )=0.

- I=l-I - --I-F
IF (N4-NI) Ig, 37, 19 FF

/-", - ................... 9 CONT INLE ............... -..................... FF
I0 AXR=C.E FF

AX T-tr. ....pp

"" L= 1 FF

N3=I - ......................................................... F F
ALP ]R=AXR I-F

,"-" " ALP[ I=AXI FF
M= l I"F

GOTOS9 ..........t-P
........ ll BETIR=TEMR PF

-BETI I=TEM I FF

AXR= C.E5 PF

....... "' ALP2R=_XR HF

ALP2 I=,_XI I-F

"N= 2 _P
GOT(] 99

12-_-BET2R=TEMR

8ET2 I=TEM I

..........................AXR= C. S

ALP3R=aXR

"ALP 3 I=A XT

M=3

GOTO 99

13 8ET3R= IrEMR

--BET3 I=TEM I

14 TEl= ZLPIR-ALP3R

TE 2= ALPI I-'AL'P31 '

TE 5=ALP3R-ALP2R

TE6=ALP31-ALP_I .....

TEN= TES_,TES+IE6_'TE_

..... -- ....................... TE3= (TE I_,IE5 + TE 2_ I_)ITEM
TE4= (TE2_TES- IE 1, lE(_) ITEM

FET---TE _'Z+I•
TE9= TE3*TE3-TE_TE_

PP

-HF

PF

P_

PP

F,p

I-F
_F

FF

I-F

PP

:.- ................................................................. 123 .............................
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NULL I
"'-" -.............. EXTERNAL FCR _uLA NUNBER ....- ....SCURCE STATEMENT

02/]
INTERNAL F

TE 10= 2 .,_T E3_'IE4 ................

,'_ L)E 15=T E7_BE T 3R- IE 4_ 4_:T31
.........................DE16 =TET,_BET3 I + TE 4_ HE T3R ...............................

TEI I=T E3_'BE T2R- TE4_6_ T21 -_BE l I_-CEI 5

TE 1 2=T E3X_BE'I 2 [ + IE 4'_ BE 12R ÷I_ E "I i I-I]E 16 .
" TET=TES-I.

I!.P_

....................................... PPI:;

P.PF

PPI;

PP_
TEl= TES'_BETER-T

TEZ=TES_BET;I÷I

TEl. 3:TE I-BFI IR-

TEI4=TE2-SEIII-

TE 15:DE 15_TE 3-0

EIC_UE'I21 .......................................................................................Fpf4

EIC_ETLR I-P_

"TE9_BET3R÷IEI C_BE T31 FPP

IE 9_Bk T3L -TEl CeB E T3R PPR

E16_1c4 ...... PPR

TE16:CEIS_TE4+OE 16_ IE3 PPI_

..........................TE I= TE 13*TE 13-TE 14_ TEl4-4. _ { TEIImTEI5-TE I2_'TEI6 }.....................................FPR

TE 2= 2 .X, TE 13:_ TE 14-4. _'( TEl 2_ TEJ.5+IEI I _'TE 16 ) I-PR

TEM : SORT(TEI_IEI+TE2_WTE2) .................................

IFITE] )11_,113,112 HPR

I13 TE4=SORT(.Sm(IEM-TEIII-

TE3= ,5_TE21TE4 I'PR

" GOTO III ........ PPR

112 TE3=SORT{,5_(IEP+IEII}

IF(TE2 } 110, _CC,2CC FPR

llO TE3=-TE3 FPR

............... 200 TE4= .5_TE2/lE3 ..................... t.-PR

Ill TF7= TE13+TE3 PPR

TEB=TE 14+TE4 PPR

TEg=TEI3-TE3 PPR

TEIO=TEI4-TE4 ...................................I-PR

TEI=2._TE 15 PPR

.........................TE2: _,')TE i6 ......... PPR

IF ( T E7_'TE 7÷1E 8_,IE E- IE 9_ TES-TE IOmTEIO} 204 ,2C4 ,205 I-PR

"20"4T E7= T E _.

TE8= TE 10

'205 TEM=IET*TE?+TEE_TE_

TE3= ( TE 1'_TE 7, TE 2'_IE 61 ITEM

TE4:( TE2*TE?- TE I*TE E} ITE_

AXR= AL P3k +T E3*TE 5- I_-4, l_-o

AX T-al P 3I",_TE] _ T E6+IE_ xxTE'5

ALP4R= _XR

ALP 4 I=AXI ...............

M=4

GO TO $9 ......................

[5 N6= I

38"1F{ A_S {HEEL )÷_BS{ _ELII-I;E'2C) l 8,18,1b

16 TE 7= AB _ (ALP=R-AXR)+ABS(ALP_ I-AX I )

IF( T ETI{ A BS(A XR )+ A8 _{A;(I ) )-I, E''/} 18T18-,17

I7

I-PR

FPR

PPR

hPR

PPR

I'-PR

FPR

hPR

I-PR

PPR

PPR

PPR

N3=N._+I

ALP IR=ALP2R ............

ALPII=ALP21

ALP2R= aLP 3R

ALP2 {:aLP31

ALP3R:ALP4R ....

ALP3 {=ALP41

BETIR:BET2R ....................................

BETI I:8ET2I

"BET2R:BET_R

BET21=BET3I "

I-PR

I-PR

PPR

PPR

I-PR

I-PR

I-PR

................................ I-PR

hPA

hPR

........................................................ i .....
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MULLI
EXTERNAL FCRMULA-NUMai-A -'" - ..... SCURCESTATEMENT

02/.
"- ......INTERNAL I

BET3R=IEMR .......................................................................................PPi.

BET3I=TEM I FP_

IF(N3-100) 14,1E,18 ........................................................... FPF

N4=IN 4+ I PPF

RO'JTR (N4) =ALP4R ..............................................................................................................PP_

ROOT I(N4I=ALP41 FP#

N 3 = 0 ............................................................................................................................................................................ FPF

41 IF(N4-NI)3O,3?t37 FP_

3"7 RETURN .................................... _P_

30

r_ 31

32

C"_ ............33
,,,._.

IF(ASSIROOT I(N4 ))-L.E-_} 10,10,31

GO TC(32, IO),L ...................................................................................................................FP_

AXR:ALP IR FPR

AX I=-ALP I T FP_

AL P I I:-AL P I I l--Pi_

M: 5 .................................................................................. HPI_

GO TO c.9 #-PR

BETIR:TEMR ......................................................................................................FPR

BETI I=TEMI PPR

AXR: aLP2R F-PR

M=6

•"" .......................... GO TO _S

34 BET2R=IEMR

BET2 I=TEM I

"" AXR= ALP 3R

AXI=-ALP31 ....

AX I=-ALP2 I FPR

ALP21=-ALP2I .............................................................................................................FPR

FPR

ALP31=-ALP_I

..................L:2 .............

M:3

99-TEMR=CCE(II

TEM I=O ,0

--D._ IOCI=I,NI

TE I= T E_R'_ AXR- TEW I _A_ l

......................... TEM [=TEMI _A ;(R÷ TEMF_:AXI

I00 TEMR= TE I*CCE (I'_l}

HELU=TEMR

BELL:TEM I

.............................................. FPR

I-'PR

I"PR

FPR

.........................................................................................................FPR

FP_

......................................................................................................... IwPR

I-PR

................ I-PR

I'-PR

.......................... I-PR

I-PR

................................ FPR

I-PR

I-PR

FPR

I-PR

EPR

TEMI=AXR-_OOIR{ I} ......................................................................................................._'PR

42 IF(N4) ]C2, IC3, IC2 ..........................................................................................

102 DOIO!I=I,N4

TEM2:AXI-ROCII(1)

TEl = IEM IX_TE _ I÷TE_'2_ TEMZ

TE2= (TEMR,_TE_ I+IEM. L _TEM2 }/TEL

" TEMI=(TEMImTEM1-TENR:_T_-M2}/IEI

I01 TEMR=TE2 ;

i03" GO TO {]li-12,-I3-'t-15--t_3-_54) ,M
END

I'-PR

I-PR

.............................. I-PR

F,PR

.......................... I-PR

.\
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-TOLERANCE--_ ---" _"C;,C _s_gS _SE-G4 ....................................

INP

O.IIOCC

0.63320
0.11930

0.36_71

0.12159

0.40345

O. 1339_

LT VECIOR
CCOE (2 C.9,0671CIE
5glE Cl 0. c52116_DE
355E- C2 ............... C.142C6473E
470E C2 C.44924 ag/_-

271E C3 O. 14d4EO53E

355E C3 C.4927_g2gE

381E C4 - C.l_35ggC4E

CI 0.81950250E 01
C1 0.69719975E 01
C2 ......... 0.17052747E 02
62 0.54781334E 02

C3 0.18132 739E 03

C3 0.60186 163E 03

C4 ....... 0.IC982008E 04

0.7310235

0,7702636

0.2056340
0.6683628

0.2214515

0.735 IOET,

" KM I=
IE

E

O. 13g

0.633
0.119

0.368

0.121

0.403

0,133

STIMATEC VECTGR
qgqggE C2 O. g40_TCC?E-GI 0.81950239E Ol 0.73102331
20526E Ci C.65211_ICE Cl O,69719367E Ol 0,7702622i

__.0_26E C2 ............... C.142C(_4.$EE _C2 ....... .0.17C52703E 02 ........... 0.2058335(
11376E C2 0.4492,_77dE C2 0.54781169E 02 0.6683612C
_9240E C3 ............ C.1484_015E C3 ............. 0.18132695E 03 .......... 0.22145101
45258E C3 0.4927681ZE C3 0.60186017E 03 0.735107C(
__;"348E--C 4 E_-I_35cE_4E -C4

VECTOR FRCM

.'-"................... O.IIOCOCOIE C2 ............. C $4G_7117E-OI
0.63320677E Cl 0.65Z11810E Cl

............. O. 119304C7E--C2 C;I 4ZO _ 541E"-C2

0.368"iI(:C_9E C2 G._4925161= C2
...................... O. 12 1 59 3(:5E--C3 C, 14645171E-£3

0.40345_25E C3 0.4"_2175S4E C3
--. "................... 0",_ 133_4 _23E C4 ............. C. 1636CC81E-C4

COMPANICN FEat, CFERATION
0.81950267E Ol 0.7310237_

0.69720 145E Ol 0.7702659]

0.17052833E 02 ..................0.205_35I_
0.547816725 02 0.6683675{
0.1813288gE 03 0.22145344

0.6018b 742E 03 0.735 I16C_

OLTPUT COEFF IC II-I_IS

..................O,Ogg c_99E-C 1 .............C-,23841_5EE-C6

SYSIEM MAIRIX

.................. O,23841E58E_C6 ........ C._ cg_976E--GO

-O.99g_SC88E CC G.zC4CI334E Cl

....................... INPUT COEFFICIENTS .......................
O. lOg_g_ggE C2 0.94_7C_E Ol

ROOT REAL PART

...................... 1 ..... O.61E]30-_3E

2 O. 1221402gE
................... NUMBER OF-CGMPLEX REGIS

CMFLX PA_T

CC ........-G.

C i -G. 126 ...................................................



f.-,,

OUTPUT COEFFIC IEI_TS
],Ogg_gqggE C1 ...............G.GC_C_EC1 ......................................................................................

COMPUTEI') REaL CIAGGNAL FCmkM FCR CISCRETE SYSTEM

0.1221,_C,28E CI -C.2c,8C2322E-C?
._' - ...................... 0.596C4_45E-('i ......... (,81_3C55E CO

C. Sc_SSS4SE Ol

INP UT-CO EFF 1CI ENTS

................ 3.10JCOC43E Cl

©

©

OUTPUT COEFFIC IENTS

...................... CONTINI;O(.S _YSTEM IN REAL- DIAGC_AL FCRM .......................................................................
0.200C0C14E Cl C.

........................... O. ......... _-C.2GOGGG27E-CI

IN PU T-COE" F F ICTENT 5
0. I00COC43E Cl C,,_g_Sk_E Ol

...................OUTPUT COEFFIC IENIS .....................................................................................................

0.0_9c_C99E CI -G.

CLINTINUOLS S'rSTEI V I_ CGMPA_ILA FCFM
...................... O, 149 Ol 161E-C'/ .......... C._c.__E O0 ...............................................................

0.400COC85E C1 -C. 12_4C_CE-C5

INPUT COEFFICIENTS

0713_c _cS9E---C2

THIS REAL IZATICN IS

-"C. IBCGC C C'IE_

SUCCESSFUL, ALL
02 ........... -. ....................................................................

CCEFFICIEI_I'S HAVE BEEN MATCHEC



exponential. Our justification for this is again the assumption that the

6 used to generate ¢ was smaller than half the smallest natural period

appearing in the spectrum of A.

3) Companion form.

An nth order matrix A is said to be in companion form if

ai,l+ I = 1 ,

the characteristic polynomial of A is

n
x +

n-1

I an,j+lxJ ,
j=o

and all other alj , besides the last row and the first upper diagonal,

are zero.

It is easy to show that if the matrlx

H

S ." He

H¢ n-I

Is nonslngular, i.e. if [H, ¢] is completely observable, then

HS -I ..= [1, O, " , O]

and S¢S -I is in companion form.

Appendices: Attached are listings of a main program to call CPC, the

data used by that main, and the output from CPC produced by that data.

Listings of CPC, MULLER, MATINV, and MINV appear in

APPENDIX B - MICARE.
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i C THIS

............................ PRINT

F_ i_ l=

........................... _RI_l I_

PRINT 10

, _INT 10

...... _ ....................... PRINT 10
i '

\

'_ _ALL CPC

lQq F_RNAT (

l_p F_R_AI (

........................ I_ F_AT-I

IN_ _PMAT (

SI_._(15,1_),_{I=-},C{15) ......................................................................

]5 l_ _Alk F_R CPC - w Ib IRAWK

1.81.IHIII;-I=I-.Ki)I-C_I;.I=TIK-. 1.........................................................................

101,((S(I,JI,J=I,K),I=I,_i
........................

10P .......................................................................
lwK

3, (S(-I-;_-I_J=I,K) ........................... ;...................

_, .....(BfI-IiI=[,KI
5* (CIII,I=I.Ki

7,P-T .........

(S._.E,C,DT) _-I

IIO,E20._I

_EI_._) ...................................

23×,14_INPUT YATRIX S .III)

IP6EPO_-} ............

15_OINPUT VECTOR _,IP_E20.Pi

liGr_'-_:'Z__'_ _l-- IT5 F01_ I:_I;TT'--VE-C1'-FiR-"C-;i P _/E'-20; E-}

, I!G7 F_RMAT ( _i-'OI]T _,IPIE20.A)

........... Irip--F_iR M-A-T--(I7- --)
FN1G

.............................. 3 ......... 1- ...................

. C1"1P5_37473 . Q7."t5 -,3.85

0

0 i. 0

........................ 1. - 18EO-O-6-271 --i 5.9-48-1;/P

I •

-6.7669062

0
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INPUT MATRIX S

.nSno_onoE nO.........,.ooncoooo_ no .........OOOO0OOOE-OO ................................

.nooono,OEnO .O0O0Q000E OO ............ 1.00000000E O0 .......................

- -_.-L-x,h m-6-mTi-0 E--a-I -_. 77_690_._0E oo

T_PZFT-V¥_CT6_--I_ J. ononoddhE-bd .ooonodOd-E DO .oddo-6ooO-E-do-

.................... OT............ 1.onooooonE oo ...........................................................................

R_T REAL PART CMPLX PART
I -.P_oii6XIE O! .83P70654E"O0

p -.P2nlI64!E O! -.83PZn6F4E O0

.............................. 3....... _-,P364578dE-Ol ..... -.-89OE_leOE-i7

NUMPER @F COMPLEX ROOTS : 2

...................... OOT-PL;T--CSEFF!CiENTS
.vnnononoE n! .nOnOl_OOOE nO .IO000000E O1

CQMPUTED REAL DIAGONAL

-.?POt_.641E OL_____ ......

-._PT_654E _0

-.o3J3P257E-Og

._3970654E nO

-.I1641532E-09

SYSTEM

.232_3064E-09 ..........
-.30550022E-09

................ -- ............................ 6 .........
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INPUT C(gEFFICIENTS
JI2QSPO55E-O-_ .............. _6242_183E O0 ........... _............................

_UTP[;T COEfFICIEnTS

_'_ .in_onodoE-d! .rononoooE no .............. .-iOOOOO00E

-__ ...................C_NTIKU_US SYSTEM-IN--REAL DIAGONAL FORM ....
._.__ ............... ,_5._e63QgE O0 P77gQ295E nt .O0000000g

-.?77992QSE-O! ............. .#5R86399E-O0
\

.nO_OOOOOE O0 ._O_O0000g O0

Ol

I

......... INPUT COEFF|C|ENTS ....................

-._p17580gE O0 .12QS_O55E

O0

................ .O0000000E-O0

.8605Qg55E O0

01 .......... ._62426183E O0 ...........................

bUTPI;T C_EFFICIEKTS

.!OflOOOflOE O! .............. .QO¢4¢470E-t2 -.90940470E-12 .............

CgNIINUOUS SYSIEM IN CgMPANION FORM

.........................nOnO_OnOE nO .;OÙOOOOOE nl -.9094_470E-12

-.3627Q7aSE-iO -.15461410E-I0 .IO000000E Ol
.TP-_TiiP_-E'-_-I -._9336237E Ol .25723275E-01

...................INPUT _EFFICIENTS

.75037472E-02 .36140188E fll .10989349E 02
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